
Exploring the Parameter Space of
Spiking Neural Networks for
Winner-Take-All Dynamics

Master’s Thesis

Marin Ozaki

Neural Systems and Computation Master’s Program
Institute of Neuroinformatics

University of Zurich / ETH Zurich

Supervisors:
Alpha Renner

Dr. Yulia Sandamirskaya

July 15, 2019

ii

Acknowledgements

I would like to express my sincere gratitude to my supervisors, collaborators, and
friends that supported me throughout my thesis project and Master’s studies.

First and foremost, I would like to thank Alpha Renner and Dr. Yulia
Sandamirskaya for their supervision, support, and for allowing me to work on
this project in the first place. I further wish to thank Prof. Giacomo Indiveri for
helpful feedback, Chenxi for fruitful discussions, and Lukas for proofreading.

I would also like to thank the NSC Master’s students and INI members for
creating this unique environment that I so greatly enjoyed studying and working
in. Special thanks I would like to direct to Lottie Walch for taking care of much
of the Master program’s administration.

Finally, I wish to thank the Japan Student Services Organization for providing
funding, Rice Up! for providing food, and my family and friends for providing
support.

iii

iv

Abstract

Winner-take-all (WTA) networks – circuits composed of recurrently connected
populations of excitatory and inhibitory neurons – have been shown to model cru-
cial aspects of cortical processing (Douglas et al., 1989) and provide a powerful
framework for a vast range of computations (Maass, 2000). WTA dynamics have
been studied extensively in both rate-based and spiking neuron models. Using a
strategy similar to the mean-field approach that allows obtaining rate-based pop-
ulation dynamics from spiking neuron equations (Schwalger et al., 2017), we here
explore the parameter space of spiking neural networks that results in winner-
take-all dynamics with different dynamical properties. In a first step, based on
the work by Rutishauser et al. (2011), we derive equations to find parameter
ranges for a rate-based neuron model that results in stable soft and hard WTA
behavior. We thereby extend their analysis to networks with an arbitrary number
of excitatory units. Further, we derive new conditions that separate hysteresis
and self-sustained behavior of a WTA network. In a second step, we construct
a spiking neural network consisting of groups of excitatory or inhibitory neurons
and map its parameters to the rate-based ones. In particular, we map the borders
between parameter ranges that separate some of the different dynamical winner-
take-all behaviors that we explored in the previous step. Further, we provide
a firing rate prediction that proves to be accurate when neurons of the spiking
model are weakly connected. For strong connectivity, however, neurons start to
synchronize, leading to lower activity of the spiking neuron than predicted, con-
firming previously discussed limitations of mean-field approaches. The pipeline
presented here could prove useful in assisting the tuning of spiking neural network
parameters to achieve desired behaviors in the WTA-framework, in particular on
neuromorphic hardware.

v

vi

Contents

Acknowledgements iii

Abstract v

1 Introduction 1

1.1 Winner-take-all networks . 1

1.2 Different implementations of WTA networks 2

1.2.1 Rate-based neuron models 3

1.2.2 Spiking neuron models . 3

1.3 Goals and structure of this thesis 4

2 Continuous model dynamics 5

2.1 The WTA model by Rutishauser et al. 5

2.2 Stability analysis . 6

2.2.1 Jacobian analysis . 7

2.2.2 Hermitian analysis . 10

2.2.3 Numerical simulations . 11

2.3 Extensions of the model . 13

2.3.1 3 units = (2 Exc, 1 Inh), with excitation (α1, α2) 13

2.3.2 4 units = (3 Exc, 1 Inh), with excitation (α1, α2) 15

2.3.3 n+1 units = (n Exc, 1 Inh), with excitation (α1, α2) . . . 18

2.4 Hysteresis and self-sustained behavior 26

2.4.1 Introduction . 26

2.4.2 Phase portrait and derivation of conditions 27

2.4.3 Phase plane and prediction of activity 31

2.5 Overview of different behavior classes 33

vii

viii Contents

3 Spiking model dynamics 35

3.1 Dynamics of individual model neurons 35

3.1.1 Introducing the leaky-integrate-and-fire model 35

3.1.2 Relationship between input and output frequency 36

3.1.2.1 Analytical derivation 36

3.1.2.2 Validation through simulation 38

3.1.2.3 Linearity of F-F curves as a function of weight . 38

3.1.2.4 Linearization by series expansion 40

3.2 From single neurons to groups . 41

3.2.1 Using Poisson spike trains as input 42

3.2.2 Combining different weights and frequencies 42

3.3 Group dynamics . 45

3.3.1 Analysis of 2 spiking neuron groups (1 Exc, 1 Inh) 45

3.3.1.1 Stability analysis based on rate-based results . . 46

3.3.1.2 Phase plane for activity prediction 48

3.3.1.3 Effect of synchronization on activity prediction . 53

3.3.1.4 Connection probability and phase synchronization 55

3.3.2 WTA with 3 spiking neuron groups (2 Exc, 1 Inh) 58

3.3.3 WTA with 4 spiking neuron groups (3 Exc, 1 Inh) 63

4 Discussion 67

A Matlab app for phase plane visualization A-1

B Numerical fixed point approximation program B-1

List of Figures

2.1 Basic architecture of 3-unit WTA network 6

2.2 Stability of hard WTA in 3-unit network 9

2.3 Stability of soft and hard WTA in 3-unit network 10

2.4 Results of numerical simulations of Rutishauser’s model (stability) 12

2.5 Results of numerical simulations of Rutishauser’s model (WTA) . 13

2.6 Soft WTA in 3-unit network with inter-excitatory connections . . 16

2.7 Basic architecture of 4-unit WTA network 16

2.8 Exemplary phase portrait of 2-unit network 26

2.9 Phase plane and input-output relationship for 2-unit network. . . 32

2.10 Parameter regions associated with different WTA behaviors . . . 33

2.11 Parameter regions associated with different hysteresis behaviors . 34

3.1 Number-of-spikes calculation illustrated 37

3.2 Comparison of analytically derived and simulated F-F curves . . 39

3.3 Analytically derived F-F curves for small weights 40

3.4 Derivate of the F-F function . 41

3.5 Theoretical F-F curve and simulation results with Poisson input . 42

3.6 Validation of strategy for combining different inputs 44

3.7 Stability in numerical approximation and spiking simulation in 2-
unit network . 48

3.8 Depiction of phase plane and activity prediction 49

3.9 Activity prediction of numerical approximation and simulation
compared . 50

3.10 Input-output relationship of firing frequency in theory and simu-
lation when varying the self-excitation parameter α1 51

3.11 Theoretically derived activity prediction tested in simulations . . 52

3.12 Relation between PSI and difference between theory and prediction 54

3.13 PSI as a function of connection probability 56

ix

x LIST OF FIGURES

3.14 Relation between PSI connectivity and difference between theory
and simulation . 57

3.15 Spiking time course for soft and hard WTA in 3-unit network . . 60

3.16 Stability in numerical approximation and spiking simulation in 3-
unit network . 61

3.17 Stable soft and hard region based on numerical approximation and
spiking simulation in 3-unit network 62

3.18 Stability in 4-unit WTA with α∗2 = 0.1 65

3.19 Stability in numerical approximation and spiking simulation in 4-
unit network . 65

3.20 Stable soft and hard region based on numerical approximation and
spiking simulation in 4-unit network 66

A.1 Screenshot of interactive phase plane visualization tool A-2

Chapter 1

Introduction

1.1 Winner-take-all networks

Winner-take-all (WTA) networks are networks of recurrently connected popu-
lations of excitatory and inhibitory neurons that are capable of detecting and
amplifying the neural unit receiving the strongest input while suppressing the
activity of others (Fang et al., 1996, Feldman and Ballard, 1982). Modeling piv-
otal aspects of cortical neural networks (Douglas et al., 1989) and providing a
powerful computational framework for both software (Maass, 2000) and hard-
ware (Lazzaro et al., 1989), WTA networks have been receiving a vast amount
of attention.

In its most typical form, a winner-take-all network consists of several recur-
rently connected excitatory units as well as a small number of inhibitory units
that receive inputs from all excitatory ones and act on them through global in-
hibition (Rutishauser et al., 2011). WTA networks therefore belong to the com-
putationally powerful class of competitive networks that operate through shared
inhibition (Binas et al., 2014, Douglas and Martin, 2007). If, as a result of this
competition, the network unit receiving the strongest input is the only one to re-
main active, this behavior is regarded as hard WTA. Soft WTA, to the contrary,
is characterized by the continued activity of multiple units in this scenario.

In contrast to models focusing exclusively on serial feed-forward connections
and disregarding the role of excitatory feedback, WTA networks have been put
forward as model candidates for canonical microcircuits in the neocortex (Binas
et al., 2014). This proposal assumes the existence of a circuit that is repeated,
and slightly modified, several times in each area of the cortex (Creutzfeldt, 1977,
Douglas et al., 1989, Szentágothai, 1978). Douglas et al. (1989) developed such
a simplified circuit model of the visual cortex that was capable of predicting in-
tracellular recordings in the cat striate cortex upon thalamic stimulation. Their
model proposes the existence of two excitatory and a single inhibitory interact-
ing neuron population; each receiving input from the thalamus and each other
(Douglas et al., 1989).

1

2 Introduction

The self-excitation in this model is in keeping with anatomical studies showing
that the vast majority of a neuron’s input originates from neighboring excitatory
neurons in the same area of the cortex, rather than from long-range projections
from other cortical areas or subcortical nuclei (Douglas et al., 1995).

A key question that is discussed in this context is how the relatively small
fraction of input that is received from earlier stages of the cortical hierarchy,
compared to the predominant self-excitation, can be processed reliably (Douglas
and Martin, 2007). To investigate the computational significance of this circuitry,
Douglas and Martin (2007) analyzed a simple network of linear threshold neurons
that, coarsely inspired by the recurrent circuitry of the neocortex, comprised a
single inhibitory neuron as well as a large population of excitatory neurons that
receive input through excitatory feed-forward and feedback connections as well as
inhibitory feedback from a global inhibitory neuron. Their simulations revealed
that the excitatory recurrent feedback results in targeted enhancement of input
features that are aligned with the patterns of the feedback connection weights.
The global inhibitory neuron further imposes a dynamical inhibitory threshold
to suppress outliers (Douglas and Martin, 2007).

Studies like this have been used to demonstrate that non-linear functions
such as signal amplification and restoration can be implemented through simple
WTA circuits. Simulational studies have further been complemented by more
theoretical analyses. Maass (2000), for instance, showed that the winner-take-
all computation is remarkably powerful compared to computation in threshold
and sigmoidal gates and that circuits making use of a single soft-WTA gate can
approximate an arbitrary continuous function. The underlying winner-take-all
computation has further been put forward as a model of processing in the cortex.
Among the most frequently referenced examples are the vision model developed
by Riesenhuber and Poggio (1999) and the attention model by Itti et al. (1998).

1.2 Different implementations of WTA networks

Winner-take-all networks can be implemented in both rate-based and spiking
neural networks. While spiking models describe a neuron’s output in the form of
discrete spikes and thereby allow the use of time for carrying out computation
(Maass, 1997), rate-based models, due to their simplicity, allow for the construc-
tion of large-scale networks and mathematical analysis of their behavior. As both
types of models are used throughout this thesis, I will briefly introduce and con-
textualize them here and provide an in-depth formalization in the second and
third chapter.

1.2. Different implementations of WTA networks 3

1.2.1 Rate-based neuron models

Rate-based neuron models are built on the idea that a substantial fraction of
what a neuron encodes can already be captured by its average firing rate. While
it has been proposed that stimulus information are encoded by the relative tim-
ing of individual spikes in some systems (Montemurro et al., 2008, Shapiro and
Ferbinteanu, 2006); in other instances, the firing frequency was shown to already
convey much information. The latter view thereby dates back to the work of
Adrian and Zotterman (1926) who demonstrated the proportionality of firing
frequency and stimulus intensity.

The simplicity and computational tractability of rate-based models allow for
the construction of large-scale networks and detailed mathematical analysis. A
powerful concept in this context is that of neural fields, where the continuous
spatiotemporal evolution of quantities in those fields, such as average firing rates,
can be modeled through a set of neural field equations (Coombes, 2006).

Beurle (1956) is believed to be the first to have approached approximating
such a spatial continuum of neural activity for a network of exclusively excita-
tory neurons. Wilson and Cowan (1972, 1973) extended their work to model
refractory periods and allow for the incorporation of inhibitory neurons into the
networks. At the core of their model are differential equations describing the
temporal evolution of the average activity of neuron populations (Wilson and
Cowan, 1973). In order to study the behavior of a large population of neurons,
they thereby employed a mean-field approach. Amari (1977) followed up on
this work, introducing local excitation and distal inhibition, a powerful model
for interacting populations of excitatory and inhibitory neurons. This work still
forms the mathematical foundation for dynamic neural fields, the computational
building blocks for dynamic field theory – a framework to describe elementary
cognitive functions as a consequence of neuronal population dynamics (Schöner,
2008).

To sum, rate-based models and their related computational and conceptual
frameworks facilitate large-scale modeling of spatiotemporally continuous neural
fields and mathematical analysis of their behavior.

1.2.2 Spiking neuron models

Spiking neuron models are the second class of models that are dealt with in this
thesis. These biologically more plausible models of neural function have been
proposed to form the third generation of neural network models (Maass, 1997).
They thereby follow the first generation of McCullough-Pitts neurons (McCulloch
and Pitts, 1943) and the second generation of units that applied an activation
function with continuous output to a weighted input sum (Maass, 1997).

Within the class of spiking networks, the many neuron models that have

4 Introduction

been established primarily differ in the degree to which they abstract biological
detail (Herz et al., 2006). Among the complex neuron models are, for instance,
the model of Hodgkin and Huxley (1952), which describe biophysical processes
at the level of individual ion channels, as well as compartmental models (Segev
et al., 1989) that also account for the spatial structure of a neuron.

While more abstract models mimic biophysical processes less closely, they al-
low for a more systematic analysis of their key computing elements as well as the
simulation of networks incorporating a large number of units. A popular choice
among simplified spiking neuron models is the leaky-integrate-and-fire (LIF) neu-
ron that accumulates the input and generates a spike when exceeding a certain
threshold (Gerstner and Kistler, 2002). The key computation in this model is
the temporal summation of inputs. In this thesis, leaky-integrate-and-fire units
will be utilized as computational building blocks for spiking neural networks.

To sum, though representing one of the simplest instances of spiking neuron
models, compared to rate-based models, a network of LIF neurons more realisti-
cally models a biological neuron’s output – a discrete spike – and thereby allows
making use of temporal information in its computations (Maass, 1997).

1.3 Goals and structure of this thesis

The two neuron models presented have both been used extensively for the study
of WTA dynamics. Using a strategy similar to the mean-field approach that
allows to obtain rate-based population dynamics from spiking neuron equations
(Schwalger et al., 2017), in this thesis, I aim to explore the parameter space of
spiking neural networks that results in winner-take-all dynamics with different
dynamical properties. This effort can be divided into two main parts.

First, based on Rutishauser et al. (2011), I will derive equations to find pa-
rameter ranges for a rate-based neuron model that results in stable soft and hard
WTA behavior. I will thereby extend the presented approach to allow stability
analysis in networks with an arbitrary number of excitatory units. Furthermore,
I will derive new conditions that separate hysteresis and self-sustained behavior
of the network. This work is described in the second chapter.

Second, using a strategy resembling the mean-field approach (Gerstner, 2000),
I will construct a spiking neural network consisting of groups of excitatory or
inhibitory neurons and map its parameters to the rate-based ones. In particular, I
will map the borders between parameter ranges that separate some of the winner-
take-all behaviors that I explored in the previous step. This work is described in
the third chapter.

Chapter 2

Continuous model dynamics

In this chapter, we will focus on the analysis of rate-based models with regard
to winner-take-all dynamics. Special emphasis will thereby be placed on the
work of Rutishauser et al. (2011) who propose a formalism for neuronal activity
within simple WTA networks and present an analytical approach for assessing
their stability. Here, we start by introducing the model and reproduce, and
slightly modify, their stability analysis. Next, we extend the analyses that were
originally carried out on a three-unit WTA network to networks with an arbitrary
number of excitatory units and a single inhibitory unit. In addition to stability
conditions in hard and soft WTA regimes, we will derive conditions for two other
phenomena: hysteresis and self-sustained behavior. Those will be introduced in
later parts of this chapter.

2.1 The WTA model by Rutishauser et al.

The basic architecture of a winner-take-all (WTA) network is illustrated in Figure
2.1, adapted from Rutishauser et al. (2011). A WTA network, here, comprises
N units, out of which N-1 are excitatory and a single one is inhibitory. Each
excitatory unit (u1, ..., uN−1) thereby receives input from both its neighbors (α2)
and itself (α1); the inhibitory unit receives input from each excitatory unit (β1)
and inhibits each excitatory unit (β2). Network A (see Figure 2.1) is restricting
an excitatory neuron’s input to self-excitation (α1), while network A’ (see Figure
2.1) also takes input from its neighbors into account. The dynamics of these
units, as described in Rutishauser et al. (2011), are given in Eqs. 2.1-2.3, where
u1, ..., uN−1 indicate the activity of the excitatory units and uN corresponds to
that of the inhibitory unit.

5

6 Continuous model dynamics

τ
dui
dt

= −gui + F (α1ui − β2uN + Ii − Ti) (2.1)

τ
duN
dt

= −guN + F (β1

N−1∑
j=1

uj − TN) (2.2)

F (x) = max(0, x) (2.3)

Here, Ii represents the external input to a unit i, g stands for the conductance,
and Ti indicates the threshold for each unit, which is constant and identical across
all units. The conductance and thresholds as well the parameters α1, β1 and β2

are, by definition, required to be greater than 0.

Figure 2.1: Basic architecture of a 3-unit winner-take-all network, modified from
Rutishauser et al. (2011). Here, u1 and u2 represent excitatory units and u3 a
single inhibitory unit. Each excitatory unit receives input from both its neighbors
(α2) and itself (α1); the inhibitory unit receives input from each excitatory unit
(β1) and sends back inhibition (β2). α2 is disregarded in network A but taken into
account in network A’. Analytical results for both network types are provided in
Rutishauser et al. (2011).

2.2 Stability analysis

Inspired by the analysis carried out in Rutishauser et al. (2011), we engaged in
two complementary approaches to assess the stability of WTA networks: first,
we made use of the Jacobian; second, of the Hermitian.

2.2. Stability analysis 7

2.2.1 Jacobian analysis

The Jacobian JA for the network A in Fig. 2.1, governed by Eqs. 2.1-2.3, is given
by:

τJA =

 l1α1 − g 0 −l3β2

0 l2α1 − g −l3β2

l1β1 l2β1 −g

 (2.4)

Here, lk is a dummy variable that takes the value of either 0 or 1, based on
the derivative of F (x) = max(0, x). By setting only a single lk to 1 and all others
to 0, we can describe hard WTA (with lk being the winning unit). Setting all
lk to 1 implements soft WTA. In both cases, by definition, the following set of
conditions has to hold: g > 0, α1 > 0, β1 > 0, and β2 > 0.

Conditions for hard WTA

We begin with the derivation of stability conditions for hard WTA networks.
Accordingly, we set l1 = 1, l2 = 0, and l3 = 1, with u1 being the winner. The
Jacobian JAh for the hard-WTA configuration of network A in Fig. 2.1, governed
by Eqs. 2.1-2.3, is given by:

τJAh =

 α1 − g 0 −β2

0 −g −β2

β1 0 −g

 (2.5)

Our goal is to assess the stability of this system. We know from contraction
analysis that JAh has to be negative definite in order for the system to be stable
(for a detailed derivation, see Izhikevich (2007)). This means that all real parts
of the eigenvalues λ of JAh have to be negative. By solving det(λI− JAh) = 0,
we get the eigenvalues:

λ =


−g

α1
2 −

√
α2

1−4β1 β2

2 − g
α1
2 +

√
α2

1−4β1 β2

2 − g

 (2.6)

Next, we can check weather Re(λ) < 0 holds for each of the eigenvalues.
We see that the first eigenvalue always satisfies the condition (−g < 0). For the
second and third eigenvalue, the real part depends on the sign of α2

1−4β1β2. We
can carry out a case differentiation:

8 Continuous model dynamics

Case I: When α2
1 − 4β1β2 < 0:

Re(λ) =

 −g
a1
2 − g
a1
2 − g

 (2.7)

Setting Re(λ) < 0, this condition is fulfilled for all eigenvalues when:

a1 < 2g (2.8)

Case II: When α2
1 − 4β1β2 ≥ 0:

Re(λ) =


−g

α1
2 −

√
α2−4β1 β2

2 − g
α1
2 +

√
α2−4β1 β2

2 − g

 (2.9)

Setting Re(λ) < 0, this condition is fulfilled for all eigenvalues when the following
two conditions hold:

(i) a1 − 2g <
√
α2 − 4β1 β2 (2.10)

(ii)
√
α2 − 4β1 β2 < 2g − a1 (2.11)

Given 0 ≤
√
α2 − 4β1 β2 (see case II condition), we can rewrite Eq. 2.11 as:

(ii.1) α1 < 2g (2.12)
(ii.2) β1β2 > (α1 − g)g (2.13)

Given Eq. 2.12, Eq. 2.10 is always true. The conditions for the second case can
therefore be reduced to Eqs. 2.12 and 2.13. The condition for the first case is
given by Eq. 2.8. Merging the results from this case differentiation, Fig. 2.2
depicts the parameter ranges that lead to stable hard WTA behavior.

Conditions for soft WTA

We can reuse the same pipeline to derive the conditions for soft WTA by simply
modifying our dummy variables: l1 = l2 = l3 = 1. The Jacobian JAs for the
soft-WTA configuration of network A in Fig. 2.1, governed by Eqs. 2.1-2.3, is
then provided by:

τJAs =

 α1 − g 0 −β2

0 α1 − g −β2

β1 β1 −g

 (2.14)

2.2. Stability analysis 9

Hard WTA stable area

0 g 2g 3g

1

0

g
2

2g
2

3g
2

1
2

Stable Area

1 2
 =

1

2
 / 4

1 2
 =

1
 - g

1
 = 2g

Figure 2.2: Depiction of parameter ranges for stable hard-WTA behavior in the
3-unit network type A depicted in Fig. 2.1. Parameters combinations chosen from
the green area result in stable behavior. Note that the units for α1 are given in
g while the units for β1β2 are given in g2.

To assess stability, we again determine the conditions that need to hold in order
for the real part of all eigenvalues of the Jacobian to be negative. By solving
det(λI− JAs) = 0, we can extract the eigenvalues λ:

λ =


α1 − g

α1
2 −

√
α2

1−8β1 β2

2 − g
α1
2 +

√
α2

1−8β1 β2

2 − g

 (2.15)

By solving Re(λ) < 0, we get the conditions for soft WTA:

Case I: When α2 − 8β1β2 < 0:

α1 < g (2.16)

Case II: When α2 − 8β1β2 ≥ 0:

α1 < g (2.17)

β1β2 >
(α1 − g)g

2
(2.18)

From Eq. 2.17 and the parameter definition (β1 > 0 and β2 > 0), it follows
that Eq. 2.18 is always true. The condition for the second case can therefore be
reduced to Eq. 2.17: α1 < g. The condition for the first case is given by Eq. 2.16.
Merging both, Fig. 2.3 provides an overview of the stable area for both soft and
hard WTA.

10 Continuous model dynamics

3 units WTA

0 g 2g 3g

1

0

g
2

2g
2

3g
2

1
2

Stable Hard WTA

Soft or Hard WTA

1 2
 =

1

2
 / 4

1 2
 = (

1
 - g) g

1
 = g

1
 = 2g

Figure 2.3: Depiction of parameter ranges for stable hard and soft WTA behavior
in the 3-unit network type A depicted in Fig. 2.1. Parameter sets chosen from
the green area result in stable hard WTA behavior; those chosen from the yellow
area in soft or hard WTA behavior. Note that the units for α1 are given in g
while the units for β1β2 are given in g2.

2.2.2 Hermitian analysis

A second approach to derive analytical conditions for network stability, as
detailed in Rutishauser et al. (2011), can be described as follows:

1) Carry out an eigendecomposition of the Jacobian J = QΛQ−1

2) Set Θ = Q−1 and F = ΘJΘ−1

3) Get the Hermitian part of F, FH = 1
2(F + F∗T)

4) Check whether FH is negative definite.

Conditions for hard WTA based on Hermitian

After carrying out the steps detailed above, the eigenvalues λ of FH for JAh are
given by:

λ =


−g

α1
2 +

(α2
1−4β1 β2)

3/2

4 |α2
1−4β1 β2| +

√
α2

1−4β1 β2

4 − g

α1
2 −

(α2
1−4β1 β2)

3/2

4 |α2
1−4β1 β2| −

√
α2

1−4β1 β2

4 − g

 , (2.19)

where α2
1 − 4β1β2 6= 0. To guarantee network stability, the real parts of these

eigenvalue have to be negative. By definition of g, the first eigenvalue is always

2.2. Stability analysis 11

smaller than zero. The sign of the second and third eigenvalue depend on the
sign of α2

1 − 4β1β2. We therefore carry out a case differentiation and, in each
case, solve for negative eigenvalues. The results are summarized below:

Case I: When α2
1 − 4β1β2 < 0:

α1 < 2g (2.20)

Case II: When α2
1 − 4β1β2 > 0:

λ =


−g

α1
2 −

√
α2−4β1 β2

2 − g
α1
2 +

√
α2−4β1 β2

2 − g

 (2.21)

Setting Re(λ) < 0, we get as conditions:

α1 < 2g (2.22)
β1β2 > (α1 − g)g (2.23)

The conditions derived using the Hermitian approach are identical to those
derived using the Jacobian approach. This has also been the case for soft WTA
(results not shown here). In the discussion of their paper, however, Rutishauser
et al. (2011) conclude that they did not succeed in deriving analytical conditions
using the Jacobian.

Furthermore, they derived stronger conditions as they appear to be neglecting
the parameter region where α2

1 − 4β1β2 < 0. As a consequence, they note that
their analytical solution assigns an upper bound to the parameter β2 which is,
in fact, not necessary with regard to their simulations. Using our approach, by
carrying out a full case differentiation, no such upper bound is set and analytical
and simulation results are identical. Apart from this, our results match those
reported by Rutishauser et al. (2011). We will use the Jacobian method hereafter.

2.2.3 Numerical simulations

To validate the analytical results, we carried out numerical simulations of the
differential equations of the model by Rutishauser et al. (2011) for 3-unit WTA
networks (Eqs. 2.1 - 2.3). For these simulations, we made use of the simulator
Brian 2 (Goodman and Brette, 2008).

Fig. 2.4 shows the stable and unstable behaviour in the simulation, the bor-
ders of which match well with the analytical result. The unstable behavior,
observed outside of the stable soft or hard WTA parameter region, can further

12 Continuous model dynamics

Figure 2.4: Results of numerical simulations of the model by Rutishauser et al.
(2011) with regard to stability. Numerical simulations were conducted for Eqs. 2.1
- 2.3 governing the activity of the 3-unit network. For all simulations, the pa-
rameters β2 and g were set to 1, and β1 and α1 were varied between 0 and 2.8 by
steps of 0.1. For each parameter set, a simulation was carried out for 2 seconds,
where from 0.5 to 1.5 seconds, the winning unit received an external input of 10
and the losing unit an input of 8. In the other time ranges, no external input
was provided. Left panel: Visualization of explosion in the parameter space.
We measured the average activity for the winning unit u1 between 1.4 and 1.5
seconds, i.e., the last 100 ms of the input period, and plotted these values as a
heatmap. To facilitate visual inspection of such heatmap, the mean of u1 was
logarized with the base of 10 and all values exceeding 10 are depicted by the
same maximum color of the color bar. The blue lines represent the borders for
the Jacobian analysis as shown in Fig. 2.3. When α1 < 2, the explosion area is
given by β1β2 < α1− 1. When α1 > 2, β1β2 < α2

1/4 make up the explosion area.
This result matches with the simulation presented in Rutishauser et al. (2011).
Right panel: Visualization of oscillation in the parameter space. To quantify
oscillation, we measured the sum of the negative gradient: if v denotes the activ-
ity vector and grad[t]=v[t]-v[t-1] its gradient, all negative values in the gradient
were summed up here. To differentiate between explosion and oscillation, only
negative values were summed up. As we can see in the heatmap, in the area
where β1β2 < α2

1/4 holds, we can find oscillating behavior.

be subdivided into two classes: first, explosion, where the activity level goes up
to infinity; second, oscillation, where an excitatory and inhibitory unit oscillate.
The details are provided in Fig. 2.4.

Fig. 2.5 shows the result of numerical simulations used to assess soft and hard
WTA. To measure soft and hard WTA, we calculated the average activity for the
winner unit, u1, in the last 100 ms of the input period (1 second in total) and

2.3. Extensions of the model 13

Figure 2.5: Results of numerical simulations of the model by Rutishauser et al.
(2011) with regard to soft and hard WTA. The simulation configuration used
for generating this figure is the same as the one used for Fig. 2.4. The colors
indicate the relative fraction of the winning unit’s activity. The blue line depicts
the theoretical soft/hard WTA boundary as shown in Fig. 2.3.

determined the ratio that the summed up activity of this unit would make up
out of the overall activity of all units. This value was plotted in the heatmap
shown in Fig. 2.5. In the absence of any interaction, this value would correspond
to 10

10+8 = 0.556, whereas in hard WTA, it would be 1. The blue line depicts
the theoretical soft/hard WTA boundary as it appears in Fig. 2.3. We find that
the entire parameter space right of the blue line (α1 > 1) does, indeed, hold
values close to 1 and corresponds to hard WTA. We further note that in the area
left of the blue line (α1 < 1), both soft and hard WTA can be stable. Further,
it is shown that within this area, when self-excitation and inhibition are large,
the WTA configuration will be hard; otherwise soft. Overall, this investigation
validates the analytically obtained conditions.

2.3 Extensions of the model

2.3.1 3 units = (2 Exc, 1 Inh), with excitation (α1, α2)

Here, we start to extend the network and carry out the Jacobian analysis detailed
in the previous section. As a first step, we add inter-excitatory interactions,
thereby producing the network type depicted in Fig. 2.1 A’. The Jacobian JA′

for such network is given by:

14 Continuous model dynamics

τJA′ =

 l1α1 − g l2α2 −l3β2

l1α2 l2α1 − g −l3β2

l1β1 l2β1 −g

 , (2.24)

where g > 0, α1 > 0, α2 > 0, β2 > 0, and β1 > 0 hold by definition.

Conditions for hard WTA

Setting l1 = 1, l2 = 0, l3 = 1 and repeating the Jacobian analysis presented
above, we can derive conditions for stability in the hard WTA regime. These
conditions are identical to those of the 3-unit WTA without inter-excitatory unit
interactions:

α1 < 2g (2.25)
β1β2 > (α1 − g)g (2.26)

This result is intuitively plausible as there is no additional interaction with the
winner unit when all other excitatory units are inactive.

Conditions for soft WTA

Setting l1 = l2 = l3 = 1, we can carry out the same analysis for soft WTA in
the network shown in Fig. 2.1 A’. The Jacobian is given by Eq. 2.27 and its
eigenvalues by Eq. 2.28:

τJA′s =

 α1 − g α2 −β2

α2 α1 − g −β2

β1 β1 −g

 (2.27)

λ =


α1 − α2 − g

α1
2 + α2

2 −
√
α1

2+2α1 α2+α2
2−8β1 β2

2 − g
α1
2 + α2

2 +

√
α1

2+2α1 α2+α2
2−8β1 β2

2 − g

 (2.28)

By substituting α = α1 + α2, the eigenvalues can be expressed as:

λ =


α1 − α2 − g

α
2 −
√
α2−8β1 β2

2 − g
α
2 +

√
α2−8β1 β2

2 − g

 (2.29)

2.3. Extensions of the model 15

Here, we carry out a case differentiation and derive the conditions that need to
hold to ensure negative real parts of all eigenvalues.

Case I: When α2 − 8β1β2 < 0:

α1 − α2 < g (2.30)
α < 2g (2.31)

Case II: When α2 − 8β1β2 ≥ 0:

α1 − α2 < g (2.32)
α < 2g (2.33)

β1β2 >
(α− g)g

2
(2.34)

In addition, in both cases, α1 <
3
2g and α2 <

1
2g hold because:

α1 − α2 < g (2.35)
α1 + α2 < 2g (2.36)

Adding both equations yields:

2α1 < 3g (2.37)

α1 <
3

2
g (2.38)

By subtracting Eq. 2.38 from Eq. 2.36, we get:

α2 <
1

2
g (2.39)

Fig. 2.6 shows the resulting parameter range for stable soft WTA behavior.
Note that an additional condition is given by α1 <

3
2g. Stability in hard WTA is

not depicted here as the conditions are identical to those shown in Fig. 2.2.

2.3.2 4 units = (3 Exc, 1 Inh), with excitation (α1, α2)

Fig. 2.7 shows two architectures, B and B’, for a 4-unit WTA network. Eq. 2.40
provides its Jacobian. We will here demonstrate the analysis for network type
B’.

JB′ =


l1α1 − g l2α2 l3α2 −l4β2

l1α2 l2α1 − g l3α2 −l4β2

l1α2 l2α2 l3α1 − g −l4β2

l1β1 l2β1 l3β1 −g

 (2.40)

16 Continuous model dynamics

3 units WTA

0 g 2g 3g
0

g
2

2g
2

3g
2

1
2

stable soft WTA

1 2
 =

2
 / 8

1 2
 = (- g) / 2

 = 2g

Figure 2.6: Depiction of parameter ranges for stable soft WTA behavior in 3-
unit networks with inter-excitatory connections. Parameter sets chosen from the
yellow area result in stable soft WTA behavior as long as α1−α2 < 0 holds. The
horizontal axis α represents the sum of α1 and α2. Note that the units for α are
given in g while the units for β1β2 are given in g2.

Figure 2.7: Basic architecture of 4-unit WTA networks, where u1, u2, and u3 rep-
resent excitatory units and u4 represents a single inhibitory unit. Each excitatory
unit receives input from both its neighbors (α2) and itself (α1); the inhibitory
unit receives input from each excitatory unit (β1) and sends back inhibition (β1).
Note that the inter-excitatory connection α2 is disregarded in network B but
taken into account in network B’.

Note that the stability conditions for hard WTA are identical for different
numbers of excitatory units as, in the end, only the winning unit remains active.
Therefore, we will, in this and the following derivation, focus exclusively on the

2.3. Extensions of the model 17

soft WTA stability conditions. The Jacobian for the soft WTA configuration can
be obtained by replacing all activation variables lk in Eq. 2.40 by 1:

JB′s =


α1 − g α2 α2 −β2

α2 α1 − g α2 −β2

α2 α2 α1 − g −β2

β1 β1 β1 −g

 (2.41)

Calculating the eigenvalues of this Jacobian, we get:

λ =


α1 − α2 − g
α1 − α2 − g

α1
2 + α2 +

√
α1

2+4α1 α2+4α2
2−12β2 β1

2 − g
α1
2 + α2 −

√
α1

2+4α1 α2+4α2
2−12β2 β1

2 − g

 , (2.42)

where i =
√
−1. By substituting α = α1 + 2α2, the eigenvalues can be expressed

as:

λ =


α1 − α2 − g
α1 − α2 − g

α
2 −
√
α2−12β1 β2

2 − g
α
2 +

√
α2−12β1 β2

2 − g

 (2.43)

From the identical first two eigenvalues, it follows that α1−α2 < g must hold.
For assessing the last two eigenvalues, we engage in a case differentiation.

Case I: α2 − 12β1β2 < 0:

α1 − α2 < g (2.44)
α < 2g (2.45)

Case II: α2 − 12β1β2 ≥ 0:

α1 − α2 < g (2.46)
α < 2g (2.47)

β1β2 >
1

3
(α− g)g (2.48)

Further, in both cases it holds that:

18 Continuous model dynamics

α1 <
4

3
g (2.49)

α2 <
1

3
g (2.50)

These are the conditions for soft WTA stability in a 4-unit network. They qual-
itatively resemble those obtained for the 3-unit network and are therefore no
longer depicted. Conditions for network B in Fig. 2.7 can be obtained by setting
α2 = 0 in the conditions for network B’ above.

2.3.3 n+1 units = (n Exc, 1 Inh), with excitation (α1, α2)

So far, we derived conditions for the stability of soft and hard WTA networks
with a fixed number of units. Here, we wish to generalize some of these results
to networks with n excitatory and a single inhibitory unit, connected as shown
in the 4-unit instance depicted in Fig. 2.7 B’. Carefully inspecting the results
presented in the previous sections, one could hypothesize that two eigenvalues of
the network’s Jacobian are given by:

α

2
±
√
α2 − 4n′ β1 β2

2
− g, (2.51)

where α is the sum of all inputs and n′ the number of active excitatory units.
The remaining n − 2 eigenvalues seems to define the relationships between the
strength of self-excitation and other forms of excitation.

In the following pages, through the means of mathematical induction, we wish
to prove that the eigenvalues λ of the Jacobian of our network, given in Eq. 2.52,
are those provided in Eq. 2.53. We will thereby assume that all connections
between excitatory unit pairs is given by the same weight (α2).

Jns =


α1 − g α2 · · · α2 −β2

α2 α1 − g · · · α2 −β2
...

...
. . .

...
...

α2 α2 · · · α1 − g −β2

β1 β1 · · · β1 −g

 (2.52)

2.3. Extensions of the model 19

λ =



α1 − α2 − g
α1 − α2 − g

...
α1 − α2 − g

n− 1

α
2 +

√
α2−4nβ1 β2

2 − g

α
2 −
√
α2−4nβ1 β2

2 − g


, (2.53)

where α = α1 + (n − 1)α2. To ease readability, we will redefine A and G as
follows:

A = α1 − g − λ (2.54)
G = −g − λ (2.55)

Proof. (i) For n=2: To extract the eigenvalues of the Jacobian, we set det(J2s −
λI) = 0 and transform from Eq. 2.56 to Eq. 2.59 as follows:

det(J2s − λI) = 0 (2.56)∣∣∣∣∣∣
 α1 − g α2 −β1

α2 α1 − g −β1

β2 β2 −g

−
 λ 0 0

0 λ 0
0 0 λ

∣∣∣∣∣∣ = 0 (2.57)

∣∣∣∣∣∣
α1 − g − λ α2 −β1

α2 α1 − g − λ −β1

β2 β2 −g − λ

∣∣∣∣∣∣ = 0 (2.58)

∣∣∣∣∣∣
A α2 −β1

α2 A −β1

β2 β2 G

∣∣∣∣∣∣ = 0 (2.59)

Applying cofactor expansion to the first line of Eq. 2.59, we get Eq. 2.60 and can
transform it to Eq. 2.62:

A

∣∣∣∣ A −β1

β2 G

∣∣∣∣− α2

∣∣∣∣ α2 −β1

β2 G

∣∣∣∣− β1

∣∣∣∣ α2 A
β2 β2

∣∣∣∣ = 0 (2.60)

A(AG+ β1β2)− α2(α2G+ β1β2)− β1β2(α2 −A) = 0 (2.61)
(A− α2)((A+ α2)G+ 2β1β2) = 0 (2.62)

20 Continuous model dynamics

Substituting α = α1 + α2, we get Eq. 2.63 and can subsequently transform it to
Eq. 2.66:

(A− α2)((α1 − g − λ+ α2)G+ 2β1β2) = 0 (2.63)
(A− α2){(α− g − λ)(−g − λ) + 2β1β2} = 0 (2.64)

(A− α2)(λ2 + (2g − α)λ+ g2 − αg − 2β1β2) = 0 (2.65)

(A− α2)(λ− α+
√
α2 − 8β1β2

2
+ g)(λ− α−

√
α2 − 8β1β2

2
+ g) = 0 (2.66)

From the factorized form of Eq. 2.66, we can directly read out the eigenvalues:

λ =


α1 − α2 − g

α
2 +

√
α2

1−8β1 β2

2 − g
α
2 −
√
α2−8β1 β2

2 − g

 , (2.67)

where α = α1 +α2. We can therefore conclude that Eq. 2.53 holds true for n=2.

(ii) Let us assume the induction hypothesis is true for n = k. Now, let n be k+1.
Wishing to extract the eigenvalues, we can, again, set det(J(k+1)s − λI) = 0 and
subsequently transform from Eq. 2.68 to Eq. 2.70:

det(J(k+1)s − λI) = 0 (2.68)∣∣∣∣∣∣∣∣∣∣∣

α1 − g − λ α2 · · · α2 −β2

α2 α1 − g − λ · · · α2 −β2
...

...
. . .

...
...

α2 α2 · · · α1 − g − λ −β2

β1 β1 · · · β1 −g − λ

∣∣∣∣∣∣∣∣∣∣∣
= 0 (2.69)

∣∣∣∣∣∣∣∣∣∣∣

A α2 · · · α2 −β2

α2 A · · · α2 −β2
...

...
. . .

...
...

α2 α2 · · · A −β2

β1 β1 · · · β1 G

∣∣∣∣∣∣∣∣∣∣∣
= 0 (2.70)

Carrying out cofactor expansion on the (k + 1)th, i.e., the second-to-last line of
Eq. 2.70, Eq. 2.70 can be rewritten to Eq. 2.71:

2.3. Extensions of the model 21

± α2

∣∣∣∣∣∣∣∣∣∣∣∣∣

α2 α2 · · · α2 α2 −β2

A α2 · · · α2 α2 −β2

α2 A · · · α2 α2 −β2
...

...
. . .

...
...

...
α2 α2 · · · A α2 −β2

β1 β1 · · · β1 β1 G

∣∣∣∣∣∣∣∣∣∣∣∣∣
∓ α2

∣∣∣∣∣∣∣∣∣∣∣∣∣

A α2 · · · α2 α2 −β2

α2 α2 · · · α2 α2 −β2

α2 A · · · α2 α2 −β2
...

...
. . .

...
...

...
α2 α2 · · · A α2 −β2

β1 β1 · · · β1 β1 G

∣∣∣∣∣∣∣∣∣∣∣∣∣

+ · · · · · · · · · − α2

∣∣∣∣∣∣∣∣∣∣∣∣∣

A α2 · · · α2 α2 −β2

α2 A · · · α2 α2 −β2
...

...
. . .

...
...

...
α2 α2 · · · A α2 −β2

α2 α2 · · · α2 α2 −β2

β1 β1 · · · β1 β1 G

∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
∗

+A

∣∣∣∣∣∣∣∣∣∣∣

A α2 · · · α2 −β2

α2 A · · · α2 −β2
...

...
. . .

...
...

α2 α2 · · · A −β2

β1 β1 · · · β1 G

∣∣∣∣∣∣∣∣∣∣∣
− (−β1)

∣∣∣∣∣∣∣∣∣∣∣

A α2 · · · α2 α2

α2 A · · · α2 α2
...

...
. . .

...
...

α2 α2 · · · A α2

β1 β1 · · · β1 β1

∣∣∣∣∣∣∣∣∣∣∣
= 0 (2.71)

The signs of these expressions depend on the parity of (k+1). The sign for
the cofactor of the (k + 1)th element (the second-to-last one with coefficient A)
is always positive as we do a cofactor expansion of the (k+ 1)th line and the sign
is given by (−1)(k+1)+(k+1) = (−1)2(k+1) = 1. The adjacent elements therefore
have negative signs.

When inspecting the cofactors with α2 coefficients, we note that the overall
set of rows is identical and that the ith row of the ith cofactor consists exclusively
of α2 entries. We can transform the determinant of the ith to that of the kth

cofactor by iteratively swapping the row containing only α2’s with the one below
until having reached the kth row. With each swapping operation, the sign of
the determinant changes. In the end, the determinant of the ith cofactor will be
identical to that of the kth cofactor (the * part of 2.70) as the number of swaps
is given by k − i, of which the parity matches with the sign difference with the
kth cofactor. Therefore Eq. 2.71 can be simplified to Eq. 2.72:

22 Continuous model dynamics

− kα2

∣∣∣∣∣∣∣∣∣∣∣∣∣

A α2 · · · α2 α2 −β2

α2 A · · · α2 α2 −β2
...

...
. . .

...
...

...
α2 α2 · · · A α2 −β2

α2 α2 · · · α2 α2 −β2

β1 β1 · · · β1 β1 G

∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
∗

+A

∣∣∣∣∣∣∣∣∣∣∣

A α2 · · · α2 −β2

α2 A · · · α2 −β2
...

...
. . .

...
...

α2 α2 · · · A −β2

β1 β1 · · · β1 G

∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
∗∗

+β1

∣∣∣∣∣∣∣∣∣∣∣

A α2 · · · α2 α2

α2 A · · · α2 α2
...

...
. . .

...
...

α2 α2 · · · A α2

β1 β1 · · · β1 β1

∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
∗∗∗

= 0 (2.72)

For the sake of readability and in order to ease comprehension, we will solve the
three remaining determinants a parts of Eq. 2.72 successively.

Part 1 (*): Here, we will start by solving the first determinant of 2.72. By sub-
tracting the kth row, i.e., the second-to-last one, from the first row and applying
cofactor expansion recursively, we derive the following:

∣∣∣∣∣∣∣∣∣∣∣∣∣

A α2 · · · α2 α2 −β2

α2 A · · · α2 α2 −β2
...

...
. . .

...
...

...
α2 α2 · · · A α2 −β2

α2 α2 · · · α2 α2 −β2

β1 β1 · · · β1 β1 G

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

A− α2 0 · · · 0 0 0
α2 A · · · α2 α2 −β2
...

...
. . .

...
...

...
α2 α2 · · · A α2 −β2

α2 α2 · · · α2 α2 −β2

β1 β1 · · · β1 β1 G

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (A− α2)

∣∣∣∣∣∣∣∣∣∣∣

A · · · α2 α2 −β2
...

. . .
...

...
...

α2 · · · A α2 −β2

α2 · · · α2 α2 −β2

β1 · · · β1 β1 G

∣∣∣∣∣∣∣∣∣∣∣
= · · ·

= (A− α2)k−1

∣∣∣∣ α2 −β2

β1 G

∣∣∣∣
= (A− α2)k−1(α2G+ β1β2) (2.73)

Part 2 (**): The second determinant of 2.72 is the same as det(Jks−λI). Given
the induction hypothesis, let us define:

2.3. Extensions of the model 23

αk = α1 + (k − 1)α2 (2.74)

It follows that:

det(Jks − λI) = (α1 − α2 − g − λ)k−1∗αk +
√
α2
k − 4kβ1β2

2
− g − λ

αk −
√
α2
k − 4kβ1β2

2
− g − λ

 (2.75)

= (A− α2)k−1∗αk +
√
α2
k − 4kβ1β2

2
+G

αk −
√
α2
k − 4kβ1β2

2
+G

 (2.76)

= (A− α2)k−1

(αk
2

+G
)2
−


√
α2
k − 4kβ1β2

2

2
 (2.77)

= (A− α2)k−1
(
G2 + αkG+ kβ1β2

)
(2.78)

Part 3 (***): The third determinant of 2.72 can be calculated similarly to the
first determinant. By substracting the column (k + 1) from the first one and
applying cofactor expansion to the first column recursively, we get:

∣∣∣∣∣∣∣∣∣∣∣

A α2 · · · α2 α2

α2 A · · · α2 α2
...

...
. . .

...
...

α2 α2 · · · A α2

β1 β1 · · · β1 β1

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

A− α2 α2 · · · α2 α2

0 A · · · α2 α2
...

...
. . .

...
...

0 α2 · · · A α2

0 β1 · · · β1 β1

∣∣∣∣∣∣∣∣∣∣∣
(2.79)

= (A− α2)

∣∣∣∣∣∣∣∣∣
A · · · α2 α2
...

. . .
...

...
α2 · · · A α2

β1 · · · β1 β1

∣∣∣∣∣∣∣∣∣ (2.80)

= · · ·

= (A− α2)k−1

∣∣∣∣ A α2

β1 β1

∣∣∣∣ (2.81)

= (A− α2)kβ1 (2.82)

24 Continuous model dynamics

Parts 1 - 3: To sum up the results obtained through transforming the three
determinants from above, Eq. 2.72 is transformed as follows, from Eq. 2.83 to
Eq. 2.86:

− kα2(A− α2)k−1(α2G+ β1β2)

+A(A− α2)k−1
(
G2 + αkG+ kβ1β2

)
− β2β1(A− α2)k = 0 (2.83)

(A− α2)k−1(
A
(
G2 + αkG+ kβ1β2

)
− kα2(α2G+ β1β2) + β1β2(A− α2)

)
= 0 (2.84)

A− α2)k−1
(
G(AG+Aαk − kα2

2) + (A− α2)(k + 1)β1β2

)
= 0 (2.85)

(A− α2)k−1G (AG+A(α1 + (k − 1)α2)− kα2
2)︸ ︷︷ ︸

∗

+(A− α2)(k + 1)β1β2

 = 0 (2.86)

This expression can be further simplified. By definition of A = α1+G, the part of
Eq. 2.86 denoted by * can be transformed to Eq. 2.87 and rewritten to Eq. 2.91:

(AG + A(α1 + (k − 1)α2)− kα2
2)

= ((α1 +G)G+ (α1 +G)(α1 + (k − 1)α2)− kα2
2) (2.87)

= (G2 + (2α1 + (k − 1)α2)G+ α2
1 + (k − 1)α1α2 − kα2

2) (2.88)
= (G2 + (2α1 + (k − 1)α2)G+ (α1 + kα2)(α1 − α2)) (2.89)
= (G+ α1 + kα2)(G+ α1 − α2) (2.90)
= (G+ α1 + kα2)(A− α2) (2.91)

Therefore, all of Eq. 2.86 is equivalent to Eq. 2.92 which can be transformed to
Eq. 2.95:

(A− α2)k−1 (G(G+ α1 + kα2)(A− α2) + (A− α2)(k + 1)β1β2) = 0 (2.92)
(A− α2)k

(
G2 + (α1 + kα2)G+ (k + 1)β1β2

)
= 0 (2.93)

(A− α2)k
(
G2 + (α1 + ((k + 1)− 1)α2)G+ (k + 1)β1β2

)
= 0 (2.94)

(A− α2)k
(
G2 + αk+1G+ (k + 1)β1β2

)
= 0 (2.95)

2.3. Extensions of the model 25

From Eq. 2.95, the eigenvalues for J(k+1)s can be obtained:

λ =



α1 − α2 − g
α1 − α2 − g

...
α1 − α2 − g

 (k + 1)− 1

αk+1

2 +

√
α2
k+1−4(k+1)β1 β2

2 − g

αk+1

2 −
√
α2
k+1−4(k+1)β1 β2

2 − g,


(2.96)

where αk+1 = α1 + ((k + 1)− 1)α2.

From (i) and (ii), by the principle of induction, Eq. 2.53 is true for all integers
n ≥ 2.

We have shown that the eigenvalues of a Jacobian for a network with n excita-
tory and a single inhibitory unit, connected as shown in Fig. 2.7 B’, are provided
by Eq. 2.53. By conditioning the real part of those eigenvalues to be negative,
the conditions for soft WTA of (n+1) units can be obtained:

Case I: α2 − 4nβ1β2 < 0:

α1 − α2 < g (2.97)
α < 2g (2.98)

Case II: α2 − 4nβ1β2 ≥ 0:

α1 − α2 < g (2.99)
α < 2g (2.100)

β1β2 >
1

n
(α− g)g, (2.101)

where α = α1 + (n− 1)α2.

To conclude, we were able to derive conditions for stable soft WTA behavior
in networks of n excitatory neurons and a single inhibitory neuron, assuming the
connectivity depicted in Fig. 2.7. Providing conditions for differently connected
network will be subject of future investigations.

26 Continuous model dynamics

2.4 Hysteresis and self-sustained behavior

2.4.1 Introduction

So far, we focussed on deriving conditions for stability in soft and hard winner-
take-all configurations. Here, we wish to derive conditions to account for two
further phenomena: hysteresis and self-sustained behavior. Hysteresis describes
the dependence of a system not only on its most recent input but also on its
history. More technically, a system that exhibits hysteresis is characterized by
a bistable region where, depending on its history, one of (at least) two different
states is taken.

To illustrate this idea, Fig. 2.8 depicts an exemplary phase portrait of a
system with one excitatory (u1) and one inhibitory (u2) unit. The x-axis thereby
represents the activity of the excitatory unit while the y-axis represents its scaled
time derivative. Points that fall on the dashed black line are fixed points. The
dynamics of the system are depicted for different external input strengths.

Figure 2.8: Exemplary phase portrait of 2-unit network. Line colors represent
external input strengths, ranging from weak (blue) to strong (red).

The key property of hysteresis is that the system, at a stimulus level similar to
the green line, will converge to either the left or the right fixed point, depending
on the history of the system: When starting without external input, the dynamics
of the system are given by the blue line in Fig. 2.8, which only has a single fixed
point at u1 = 0. If the input strength is increased to the level of the green line,
the system will remain at the fixed point at u1 = 0, even though a second, higher,
fixed point is present. When increasing the input strength until reaching the level
of the red line, its single fixed point (u1 > 0) will be taken. Importantly, when

2.4. Hysteresis and self-sustained behavior 27

decreasing the stimulus strength again to that of the green line, the higher fixed
point will be taken (u1 > 0). This way, the converging state of the system with
medium-strong input depends on the history of the input: coming from weaker
input, the lower fixed point will be taken; coming from stronger input, the higher
fixed point will be taken.

After having introduced and discussed hysteresis, a second type of configu-
ration we wish to investigate in this context is that of self-sustained behavior.
Self-sustained behavior describes the phenomenon of a system that, once suffi-
ciently activated by an external force, continues to be active even in the absence
of that force. More visually, self-sustained behavior holds if the line of the phase
portrait that is corresponding to no external input has a positive second turning
point. In this case, the activity does not fall back to zero once the external input
is absent.

While self-sustained behavior could, given its history dependency, technically
be considered a special form of hysteresis, we differentiate between hysteresis
and self-sustained behavior by the excitability in the absence of input following
sufficiently strong stimulation. We therefore regard hysteresis and self-sustained
behavior as mutually exclusive. Technically, we differentiate between them by
assessing the sign of the second turning point when the input level is zero.

Several conditions need to hold in case of both self-sustained behavior and
hysteresis that is not self-sustained: When inspecting Fig. 2.8, we see that all
depicted functions are made up of three sub-functions. Crucially, the gradient of
the first sub-function has to be negative, that of the second one positive, and that
of the third one negative. The two turning points further need to hold positive
x-values, and a certain amount of stimulus strength is required. Furthermore,
some conditions derived in the context of WTA stability need to hold in order to
prevent unstable behavior.

2.4.2 Phase portrait and derivation of conditions

After having introduced hysteresis and self-sustained behavior conceptually, we
will now derive the conditions for corresponding parameter values. Here, we will
start with the most simple meaningful network structure possible: a network
consisting of one excitatory (u1) and one inhibitory unit (u2). The units’ activity
can be described as follows, adapted from Rutishauser et al. (2011):

τ
du1

dt
= −gu1 + F (s+ αu1 − β2u2 − T1) (2.102)

τ
du2

dt
= −gu2 + F (β1u1 − T2), (2.103)

where F (x) = max(x, 0), s ≥ 0 is the input to the excitatory unit, and g is the
leak conductance. α1, β2, and β1 are non-negative weights.

28 Continuous model dynamics

We begin by deriving the conditions under which the inhibitory neuron (u2)
reaches its equilibrium. Setting du2

dt = 0, we can reformulate Eq. 2.103:

u2 =
F (β1u1 − T2)

g
(2.104)

Next, we can carry out a case differentiation:

Case I: When β1u1 − T2 < 0 ⇐⇒ u1 <
T2
β1
:

u2 = 0 (2.105)

Plugging Eq. 2.105 into Eq. 2.102 yields:

τ
du1

dt
= −gu1 + F (s+ α1u1 − T1) (2.106)

Note that Eq. 2.106 with F (x) = max(x, 0) is 0 if u1 <
T1−s
α1

. We can subse-
quently summarize Eq. 2.106 as follows:

τ
du1

dt
=

{
−gu1 u1 <

T1−s
α1

(α1 − g)u1 + s− T1
T1−s
α1
≤ u1

(2.107)

Case II: When β1u1 − T2 ≥ 0 :

Plugging Eq. 2.104 into Eq. 2.102 yields:

τ
du1

dt
= (α1 − g)u1 + s− T1 − β2

β1u1 − t2
g

(2.108)

Case I+II: To sum up both cases:

τ
du1

dt
=


−gu1 u1 <

T1−s
α1

(α1−g)u1 + s− T1
T1−s
α1
≤ u1 <

T2
β1

(α1−g)u1 + s− T1 − β2
β1u1−t2

g
T2
β1
≤ u1

(2.109)

Hysteresis and self-sustained behavior: We now solve these equations under
the conditions that hold in both hysteresis and self-sustained behavior: (i) having
two turning points in a positive region and having (ii) a negative gradient in the
first, (iii) a positive gradient in the second, and (iv) a negative gradient in the
third of the equations in Eq. 2.109.

2.4. Hysteresis and self-sustained behavior 29

In order to have two turning points in a positive region (u1 > 0), it has to hold
that:

T1 > 0 (2.110)

T2 > 0 (2.111)

The gradient of the first of the equations in Eq. 2.109 is trivially negative. The
gradient of the second of the equations in Eq. 2.109 with respect to u1 has to be
positive. Therefore, it has to hold that:

g < α1 (2.112)

Finally, the gradient of the third of the equations in Eq. 2.109 has to be negative.
This holds true if:

α1 − g −
β1β2

g
< 0 (2.113)

β1β2 > (α1 − g)g (2.114)

These conditions are, in fact, identical to those derived for hard WTA stabil-
ity. This makes sense as we are currently considering the interaction between a
single excitatory and a single inhibitory unit.

There are a few additional constraints that have to be taken into account.
From the convergence condition (the stability of hard WTA discussed in the last
sections can be used in this context due to the two-unit interactions), an upper
limit of α1 is set to 2g:

α1 < 2g (2.115)

In Fig. 2.8, we further see that only a certain range of external stimulation
would allow two stable fixed points. This range can be obtained by calculating
the value of the second turning point being positive (τ du1

dt > 0) and the first
turning point being negative (τ du1

dt < 0), which is as follows:

(α1 − g)
T2

β1
+ s− T1 > 0 (2.116)

−gT1 − s
α1

< 0 (2.117)

30 Continuous model dynamics

Therefore, the following has to hold:

T1 − (α1 − g)
T2

β1
< s < T1 (2.118)

We have seen that in order to observe hysteresis or self-sustained behavior,
the external input s has to change, covering the range given above. For instance,
if we start with s = 0, s has to exceed T1 in order for the system to take the
upper fixed point.

In addition to all conditions mentioned above, additional conditions from
contraction theory, derived in the previous sections, are applied in order to avoid,
for instance, explosive behavior. At the end of this section, all conditions that
need to hold for a system to show hysteresis or exhibit self-sustained behavior,
are provided.

Hysteresis: Hysteresis, on the one hand, and self-sustained behavior, on the
other hand, share several properties. To derive further conditions, we here need to
differentiate between them. We will here begin with the derivation of conditions
for hysteresis. A condition that needs to be fulfilled to have hysteresis not self-
sustain is that the second turning point is negative when s = 0, such that the
activity falls back to zero in the absence of any input. Plugging u1 = T2

β1
into the

third of the equations in Eq. 2.109 yields Eq. 2.119 and can be transformed to
Eq. 2.120:

(α1 − g)
T2

β1
+ 0− T1 < 0 (2.119)

α1 <
T1

T2
β1 + g (2.120)

When T1 > 0 (see condition i in Eq. 2.109), T2 > 0 (see condition ii in
Eq. 2.109), and β2 and g are given, the parameter range for α1 in which the
network shows hysteresis can, using Equations 2.112 and 2.120, be expressed as
follows:

g < α1 ≤
T1

T2
β1 + g (2.121)

Self-sustained behavior: Self-sustained behavior, on the other hand, can be
derived by enforcing that the second turning point be positive when s = 0. In
a manner analogous to the derivation of the hysteresis condition, we can de-
rive Eq. 2.122. Taken together, we can summarize the conditions for hysteresis
(Eq. 2.123-2.125) and self-sustained behavior (Eqs. 2.126-2.128).

2.4. Hysteresis and self-sustained behavior 31

T1

T2
β1 + g < α1 < 2g (2.122)

Hysteresis range:

g < α1 ≤ T1

T2
β1 + g (2.123)

(α1 − g)g < β1β2 (2.124)

T1 − (α1 − g)
T2

β1
< s < T1 (2.125)

Self-sustained range:

T1

T2
β1 + g < α1 < 2g (2.126)

(α1 − g)g < β1β2 (2.127)
0 < s < T1 (2.128)

These analytical results we were able to validate through numerical simula-
tions that showed that parameter sets fulfilling these conditions would, indeed,
lead to the specified type of desired behavior (not shown here).

2.4.3 Phase plane and prediction of activity

An alternative way of describing the dynamics of a system is through the de-
piction of its phase plane (for a mathematical introduction, see, for instance,
Chapter 4.3 of Gerstner et al. (2014)). The left panel of Fig. 2.9 shows the phase
plane of one excitatory and one inhibitory neuron: the red line represents the
nullcline of the differential equation governing the excitatory unit; the blue line
the nullcline of the inhibitory unit. The crossings of these nullclines are the fixed
points of the system. Under the parameter condition used for producing Fig. 2.9,
three fixed points, out of which two are stable, can be found.

Through analysis of these stable fixed points, we can predict the activity of
the system. This is illustrated in the right panel of Fig. 2.9: it shows the two
units’ activity as a function of the external input to the excitatory unit. In
the parameter setting given, the hysteresis property becomes apparent: the u1

forward line (resulting from gradually increasing the input strength) and the u2

backward line (resulting from gradually decreasing the input strength) differ for
a part of the input levels. Hence, depending on whether coming from lower or
higher activity level, different fixed points are taken.

For the purpose of further illuminating the dynamics of this system, we built
an interactive app allowing a user to enter the parameter values for a network
into the GUI and explore its dynamics (see Appendix A).

32 Continuous model dynamics

Figure 2.9: Depiction of phase plane and corresponding input-output relation-
ship for 2-unit network with α1 = 0.75, β1 = β2 = 1, g1 = g2 = 1, T1 = T2 = 1,
s = 0.8. Left panel: Nullclines of the differential equation governing the excita-
tory (red) and inhibitory (blue) unit are plotted. The intersection of nullclines
represent fixed points of the system. Arrows represent the vector field of the
direction and gradient of activity changes at each grid point. Right panel: A
unit’s activity as a function of external input to the excitatory unit. The dashed
red line represents the current external input (always corresponding to the one
shown in the left panel as phase plane). Figures are created using our interactive
Matlab app (see Appendix A).

2.5. Overview of different behavior classes 33

2.5 Overview of different behavior classes

Thus far, we extended the stability analysis of soft and hard WTA networks to
arbitrarily large networks and derived novel conditions for hysteresis as well as
self-sustained behavior. We can now put it all together.

Fig. 2.10 visualizes parameter regions associated with different winner-take-
all behaviors in a simple network of two excitatory and a single inhibitory unit, as
depicted in Fig.2.1 A. Panels (1)-(3) each depict the inputs to the excitatory units
as well as the activity of each unit. The different points in the parameter space
thereby represent examples for (1) soft WTA, (2) hard WTA, and (3) unstable
behavior.

Fig. 2.11, for a network consisting of one excitatory and one inhibitory unit,
visualizes parameter regions associated with different classes of behaviors: (1)
regular non-sustained activity without hysteresis (2) hysteresis, (3) self-sustained
behavior, and (4) unstable behavior. For each of the four types, similar to Fig. 2.9,
phase planes as well as the relationship between external inputs to the excitatory
neuron and the activity of both inhibitory and excitatory neuron are depicted.

Figure 2.10: Panel (A) Visualization of different parameter regions associated
with different WTA behaviors. The leak parameter g was set to 1. Panel (1)-(3)
are some exemplar numerical simulations for the parameter set shown as dots in
(A). The first excitatory unit represents the winner, which receives slightly larger
input than the second loser unit. The activity of the inhibitory unit was sign-
flipped for the sake of visualization, such that positive activity of the inhibitory
unit is plotted below zero. Panel (1): A soft winner-take-all example with pa-
rameters α1 = 0.8, β1β2 = 0.05. Panel (2): A hard winner-take-all example
with α1 = 1.8, β1β2 = 0.95. Panel (3): An unstable example with parameters
α1 = 2.25, β1β2 = 1.25.

34 Continuous model dynamics

Figure 2.11: Panel (A) Visualization of parameter regions associated with differ-
ent hysteresis and self-sustained behaviors. The fixed parameters were as follows:
β2 = 1, g = 1, T1 = 1, T2 = 2. Left subpanel of panels (1)-(4): Phase plane
of the activity of an excitatory and an inhibitory neuron. The red line indicates
the nullcline for the excitatory unit, the blue line the nullcline for the inhibitory
unit. The intersections of those nullclines determine the fixed points. Right sub-
panel of panels (1)-(4): Relationship between external inputs to the excitatory
neuron and the activity of the inhibitory and excitatory neuron. Explosion (no
valid fixed point) is expressed as neuronal activity of -1 on the y-axis of the right
panel.

Chapter 3

Spiking model dynamics

In the last chapter, we carried out a stability analysis for soft and hard WTA
networks and derived conditions for hysteresis and self-sustained behavior. In
this chapter, we aim to translate some of those dynamics to networks of spiking
model neurons. We will herein start by an analysis of individual neurons and
later extend our analysis to groups of neurons.

3.1 Dynamics of individual model neurons

3.1.1 Introducing the leaky-integrate-and-fire model

A popular choice among simplified spiking neuron models is the leaky-integrate-
and-fire (LIF) neuron. This type of neuron accumulates input and generates
a spike when exceeding a certain threshold (Gerstner and Kistler, 2002). The
temporal evolution of the neuron’s membrane potential v is given by:

τ
dv

dt
= −(v − vrest) +RI, (3.1)

where τ represents the membrane time constant of the neuron, v the membrane
potential, and R and I the neuron’s resistance and input current, respectively.
Upon exceeding a threshold (vθ), the neuron generates a spike and its membrane
potential is set to the resting potential vrest:

v ← vrest when v ≥ vθ (3.2)

We first wish to consider a scenario with constant input (I0). By setting the
resetting time t0 = 0, and defining tref as the refractory period, the temporal
evolution of v can be described as follows:

v(t) = vrest +RI0

(
1− exp

(
−
t− tref

τ

))
, (3.3)

35

36 Spiking model dynamics

where t > tref .

The time, tθ, that indicates when v(t) reaches its threshold, vθ, is calculated as
follows:

vθ = vrest +RI0

(
1− exp

(
−
tθ − tref

τ

))
(3.4)

tθ = tref − τ ln

(
1− vθ − vrest

RI0

)
(3.5)

The firing frequency, f , of an LIF neuron can therefore be expressed as:

f =
1

tθ
=

1

tref − τ ln
(

1− vθ−vrest
RI0

) (3.6)

3.1.2 Relationship between input and output frequency

3.1.2.1 Analytical derivation

When thinking about single neuron behavior, knowing the relationship between
presynaptic and postsynaptic firing frequencies can serve as a substitute for the
activation function (e.g. ReLU in the model by Rutishauser et al. (2011)).

When the neuron receives an input voltage – this is how the simulations
are carried out – its membrane potential increases but afterwards decays expo-
nentially due to the leak component. Let ns be the number of spikes that are
required for the postsynaptic neuron to spike, let tref be its refractory period,
and w the intensity of the synaptic input. When assuming that the firing fre-
quency of the presynaptic neuron, fpre (Hz), is constant, the interval between
spikes is also constant and equal to 1

f (s). Let an now be the voltage level present
immediately before receiving the next spike. At the arrival of the next spike, the
voltage becomes an +w and decays until the reception of the next spike in 1

f (s).
Therefore, by using an, an+1, can be expressed as Eq. 3.7. Fig. 3.1 illustrates
how to determine the number of spikes that the postsynaptic neuron needs to
receive from the presynaptic neuron in order to spike.

an+1 = (an + w) exp

(
− 1

fτ

)
(3.7)

We will now carry out a series of transformations in order to derive an equation
of the postsynaptic firing rate. When p = exp

(
− 1
fτ

)
and q = wp

1−p , we can
reformulate Eq. 3.7 to Eq. 3.8 and transform it to Eq. 3.11 as follows:

3.1. Dynamics of individual model neurons 37

time

m
e
m

b
ra

n
e
 p

o
te

n
ti
a
l
v

v

v

v - w

a
n

Figure 3.1: Illustration of how to determine the number of spikes the postsynaptic
neuron needs to receive in order to generate a spike. v represents the neuron’s
membrane potential, an captures the membrane potential immediately before
receiving and integrating the next spike, vθ is the threshold above which the
neuron spikes, and w is the synaptic input intensity.

an+1 − q = (an − q)p (3.8)
an = (a1 − q)pn−1 + q (3.9)
a1 = wp (3.10)

an =
wp− wpn+1

1− p
(3.11)

When ns is the number of input spikes that are required for the postsynaptic
neuron to spike, the number of input spikes required to reach ∆v − w, n′, are
equal to n′ = ns − 1. It follows that:

an′ =
wp− wpn′+1

1− p
≥ ∆v − w (3.12)

Since p < 1, it holds that:

wp− wpn′+1 ≥ (∆v − w)(1− p) (3.13)
wpn

′+1 ≤ wp− (∆v − w)(1− p) (3.14)

ln(w)− n′ + 1

fpreτ
≤ ln(∆vp−∆v + w) = ln(w −∆v(1− p)) (3.15)

n′ + 1 ≥ fpreτ (ln(w)− ln (w −∆v(1− p))) (3.16)

= −fpreτ ln

(
1− ∆v

w

(
1− exp

(
− 1

fpreτ

)))
(3.17)

n′ + 1 =

⌈
−fpreτ ln

(
1− ∆v

w

(
1− exp

(
− 1

fpreτ

)))⌉
(3.18)

38 Spiking model dynamics

Since n′ = ns − 1:

ns =

⌈
−fpreτ ln

(
1− ∆v

w

(
1− exp

(
− 1

fpreτ

)))⌉
(3.19)

We can therefore describe the postsynaptic firing rate as follows:

fpost =


1

ns
fpre

+tref
fpre > fθ

0 fpre ≤ fθ
(3.20)

fθ = − 1

τ ln
(
1− w

∆v

) (3.21)

w ≤ ∆v (3.22)
∆v = vθ − vrest (3.23)

3.1.2.2 Validation through simulation

To validate the analytical results, we carried out simulations and compared the re-
lation between presynaptic and postsynaptic firing rates obtained through deriva-
tion and simulation. To this end, we simulated a single LIF neuron for 2 seconds
(in simulation time) for each input firing frequency of interest. The input was
thereby chosen to be regular, as assumed in the analytical case. The postsynap-
tic firing rate was calculated as the average firing frequency in the specified time
interval. All simulations were conducted using Brian 2 (Goodman and Brette,
2008). Fig. 3.2 depicts the resulting FF-curves (the postsynaptic firing rate as a
function of presynaptic firing rate) obtained through simulations and analytical
derivation. A comparison reveals the strong correspondence between theory and
simulation.

3.1.2.3 Linearity of F-F curves as a function of weight

We have seen in the F-F curves depicted in Fig. 3.2 that, in case of a low input
frequency and a large weight, the effect of the ceiling function is strong and
the relationship between presynaptic and postsynaptic firing non-smooth. It
is important to note here that the parameter set used for the derivation and
simulation is characterized by a strong weight parameter. When the weight
is sufficiently small compared to ∆v and the input frequency sufficiently large,
instead, the effect becomes negligible, as is shown in Fig. 3.3. We further observed
and validated those results in spiking simulations (results not shown here). Given
the observed linearity, we can now simplify Eq. 3.20:

3.1. Dynamics of individual model neurons 39

Figure 3.2: Comparison of analytical derivation and simulation results. F-F
curves, depicting the postsynaptic firing rate as a function of the presynaptic
firing rate, are given for both theory and simulation. Lines thereby represent
analytical results; dots the simulation results. Different colors represent different
time constants. Further parameters are given by vθ = 1, vrest = 0, w = 0.4.

fpost =


1

tref−τ ln
(

1−∆v
w

(
1−exp

(
− 1
fpreτ

))) fpre > fθ

0 fpre ≤ fθ
(3.24)

fθ = − 1

τ ln
(
1− w

∆v

) (3.25)

w ≤ ∆v (3.26)
∆v = vθ − vrest (3.27)

It is worth pointing out that there is a correspondence between the F-F curves
(postsynaptic firing frequency as a function of presynaptic firing frequency) and
I-F curves (postsynaptic firing frequency as a function of the input current).
Specifically, by comparing Eq. 3.6 for the IF-curves and Eq. 3.24 for FF-curves,
we see that they are equal under the following condition:

RI0 =
w

1− exp
(
− 1
fpreτ

) (3.28)

Note that this is applicable when RI0 > ∆v, due to the valid range of the
equations that are used in the comparison.

40 Spiking model dynamics

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Pre firing rate(Hz)

0

50

100

150

200

250

P
o
s
t
fi
ri
n
g
 r

a
te

(H
z
)

 = 20 ms, w = 0.05

 = 100 ms, w = 0.05

w/o ceiling function

Figure 3.3: Analytically derived F-F curves for small weights and high input
frequencies. The blue and light blue lines are calculated with a ceiling functions;
the orange dotted lines are calculated without. For the configuration shown, the
differences are marginal.

3.1.2.4 Linearization by series expansion

When tref = 0, a Laurent series expansion of Eq. 3.24 at fpre =∞ yields:

fpost = − 1

τ ln
(

1− ∆v
w

(
1− exp

(
− 1
fτ

))) (3.29)

=
w

∆v
f +

w −∆v

2τ∆v
+
w2 − (∆v)2

12fτ2∆vw
+

∆v(w −∆v)

24f2τ3w2
+ · · · (3.30)

Here, f is short for fpre. Note that this expansion is at fpre =∞ and fpre should
generally be large, so the third and later component approaches zero and can
therefore be neglected. What remains is the following:

fpost '
w

∆v
fpre +

w −∆v

2τ∆v
(3.31)

Hence, when fpre is large, the F-F function is linear with a gradient of w
v .

When we look at the gradient of this function itself, we find that convergence
is very fast (see Fig. 3.4). The derivative of the final firing rate input-output

3.2. From single neurons to groups 41

function is provided by:

dfpost
dfpre

=
∆v exp

(
− 1
fτ

)
f2τ2w

(
1− ∆v

w

(
1− exp

(
− 1
fτ

)))
ln2
(

1− ∆v
w

(
1− exp

(
− 1
fτ

)))
(3.32)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Pre Firing rate (Hz)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

d
e
ri
v
a
ti
v
e

 o
f

F
-F

 c
u
rv

e

 = 20 ms, w = 0.05

 = 100 ms, w = 0.05

Figure 3.4: The derivative of the F-F function (Eq. 3.32) for τ = 20 ms, 100 ms
is plotted. The gradient of the F-F function converges to w

∆v rapidly.

3.2 From single neurons to groups

Thus far in this chapter, we introduced the leaky-integrate-and-fire neuron model
and described the relationship between the input and output firing rate for a
single LIF neuron under regular spiking input. Wishing to study winner-take-all
dynamics and the role of self-excitation, which cannot plausibly be modeled with
a single neuron due to the implausibility of self-excitation in a single neuron, we
will now turn to the analysis of a network of several LIF neurons.

In order to make use of the careful assessment presented in the previous
chapter, which allows linking parameters of a rate-based model to different types
of behaviors, we here seek to relate those findings to the spiking model. This
bridge can be built in the general context of the mean-field approach which
allows reducing the activity patterns in a network of neurons to average firing
rates. While Wilson and Cowan (1972) and Amari (1977) were the first to employ
this approach, it has been applied in numerous contexts and for many models.
Among those models is the (leaky) integrate-and-fire neuron model (Brunel, 2000,
Gerstner, 2000).

Before turning to the analysis of networks of neurons, there are a few method-
ological considerations that we wish to make beforehand.

42 Spiking model dynamics

3.2.1 Using Poisson spike trains as input

Neurons in our network model will not only receive input from external neu-
rons but also from recurrently connected neighboring neurons. This makes the
temporal arrival of input spikes less regular and the formalization as a random
process plausible. In keeping with the observation that spike trains can often be
described as a Poisson process (Heeger, 2000), we will assume a Poisson input
for our simulations.

Fig. 3.5 depicts a comparison of the theoretically derived F-F curve, which
is based on regular input, and the result of simulations which make use of non-
regular Poisson input. We see that the two curves differ only for a presynaptic
firing frequency that is just below the threshold. This is intuitively plausible: as
the membrane potential is fluctuating in the subthreshold regime, some fluctua-
tion in the spike time interval can make the neuron fire. This does not apply to
the theoretically derived curve.

Instead of deriving a new F-F function for Poisson input, we will, given the
strong correspondence, utilize the function that was derived in the context of
regular external input.

Figure 3.5: Comparison of theoretical F-F curve and simulation results with
Poisson input. The following parameters were used: weight = 0.05, τ = 20
ms. For each data point in the simulation, the simulation was carried out for 5
seconds (in simulation time). Simulations were carried out in Brian 2 (Goodman
and Brette, 2008).

3.2.2 Combining different weights and frequencies

So far, we derived an F-F function in the context of single neurons with single
weights and frequencies. In a group of neurons, we are confronted with differences
between the synaptic weights for external input, excitatory input, and inhibitory

3.2. From single neurons to groups 43

input (where even the sign is inverted), as well as differences in their correspond-
ing firing frequencies. Therefore, we wish to calculate an appropriate average of
these weights and firing frequencies.

Suppose one neuron is receiving inputs from N different sources (w1, f1),
(w2, f2), · · · , (wN , fN), where wi and fi represent the weight and frequency of
the ith input neuron. One way to calculate the combined weight w′ and input
frequency f ′ would be a firing-rate weighted averaged w and a summed up f ,
formalized as follows:

w′ =

N∑ fi
f ′
wi (3.33)

f ′ =

N∑
fi (3.34)

A further consideration is that if one neuron is connected to a group of N
neurons with a connection probability of p, each of which is firing at f (Hz) on
average, then the input frequency to the neuron is:

f ′ = Npf. (3.35)

To validate Eqs. 3.33 and 3.34, we engaged in a simulational study. We took
one neuron and two Poisson sources providing spiking inputs to the neuron. For
the Poisson sources, we thereby randomly picked the firing frequencies as well
as the weights for the connection from the input to the neuron (ranging from
positive to negative, representing excitatory to inhibitory connections). We ran
a simulation and measured the average firing frequency of the output neuron.
Next, we calculated the w′ and f ′ for this neuron, according to Eqs. 3.33 and
3.34. Then, we engaged in a second simulation where we utilized one neuron
and a single Poisson neuron as input to that neuron. The input weight and
frequency was set to w′ and f ′. If our formalism for combining multiple weights
and frequencies is working properly, those two simulations should yield the same
output frequencies. Fig. 3.6 shows a scatter plot of 1000 trials of such simulation
sets. The results reveal that the relation is strongly linear. We are therefore
going to use this summary description for our groups.

44 Spiking model dynamics

Figure 3.6: Validation results of our strategy for combining different inputs with
different frequencies and weights. For our simulation, we used one output neuron
and two Poisson input neurons whose average firing frequencies were drawn from
a uniform distribution in the range of 0 to 5000 Hz. One synaptic weight of
one of the two input sources was randomly drawn from a uniform distribution
in the range of 0 to 0.2; the other weight was drawn from a uniform distribution
in the range of -0.2 to 0.2. The latter connection can therefore be excitatory or
inhibitory. The simulations were carried out for 5 seconds (of simulated time)
and the output neuron’s average output firing frequency was calculated.
In the second part of the experiment, the combined weight w′ and frequency
f ′ was calculated based on Eq. 3.33 and Eq. 3.34. On the simulational end, we
used one Poisson input neuron whose average firing frequency is the combined fre-
quency f ′ as well as another neuron which is receiving this input and is connected
with the combined synaptic weight w′. The average output firing frequency was
calculated in the same way as the first part.
The horizontal axis of the figure represents the output frequency of the neuron
in the first part; the vertical axis represents the output frequency of the neuron
in the second part (with the combined weights and frequencies). The results of
1000 trials are shown. The results reveal that the relation is strongly linear, close
to the black line which indicates a perfect correspondence. All simulation were
carried out using Brian 2 (Goodman and Brette, 2008).

3.3. Group dynamics 45

3.3 Group dynamics

3.3.1 Analysis of 2 spiking neuron groups (1 Exc, 1 Inh)

After having introduced the mathematical tools we need for relating rate-based
and spiking models, we now wish to turn to studying WTA behavior in spiking
neuron groups.

As a first step, we here wish to start with a network containing only a single
excitatory and a single inhibitory group. We define our input-output function as
follows:

F (w, f) =


1

tref−τ ln
(

1−∆v
w

(
1−exp

(
− 1
fτ

))) f > fθ

0 f ≤ fθ
(3.36)

fθ = − 1

τ ln
(
1− w

∆v

) (3.37)

w ≤ ∆v (3.38)
∆v = vθ − vrest (3.39)

Based on the combined weight and firing frequency policy described in the
previous section, we can express the system in the following way:

τ
du1

dt
= −u1 + F (w′, f ′) (3.40)

τ
du2

dt
= −u2 + F (β1, N1p3u1) (3.41)

w′ =
N1p1u1

f ′
α1 −

N2p2u2

f ′
β2 +

fext
f ′

s (3.42)

f ′ = N1p1u1 +N2p2u2 + fext, (3.43)

where u1 and u2 are the average firing frequencies in the excitatory and inhibitory
neuron groups. p1, p2, and p3 are the probabilities for neuron connections within
the excitatory group, connections from the inhibitory to the excitatory group,
and connections from the excitatory to the inhibitory group, respectively. N1 and
N2 are the number of neurons for the excitatory and the inhibitory group. fext
represents the frequency of the external input (i.e. the input spikes), α1 represents
the synaptic weight for self excitation, and β1 and −β2 are the synaptic weights
for connections from excitatory to inhibitory and from inhibitory to excitatory
neurons, respectively.

46 Spiking model dynamics

3.3.1.1 Stability analysis based on rate-based results

Given what has been discussed above, we can apply the stability conditions of
Rutishauser et al. (2011) following linearization as the Jacobian analysis is only
concerned with the gradient of the system. To this end, we can linearize Eqs. 3.40
and 3.41 by Eq. 3.31:

τ
du1

dt
= −u1 +

w′

∆v
f ′ + Const. (3.44)

τ
du2

dt
= −u2 +

β1

∆v
N1p2u1 + Const. (3.45)

Please note that while the linearization is derived by setting f ′ and u1 to
infinity, the function’s gradient does, in fact, converge rapidly. This is shown in
Fig. 3.4. We are therefore able to use this equation even in case of medium-large
finite values of f ′ and u1. By making use of Eqs. 3.42 and 3.43, we can transform
Eqs. 3.44 and 3.45 to:

τ
du1

dt
= −u1 +

α1

∆v
N1p1u1 −

β2

∆v
N2p2u2 +

s

∆v
fext + Const. (3.46)

τ
du2

dt
= −u2 +

β1

∆v
N1p3u1 + Const. (3.47)

If we assume that both groups are active (they should be as we are assessing,
by definition, the high-frequency regime), the Jacobian of this system, as detailed
in the second chapter, is given by:

τJ2 =

[N1p1α1

∆v − 1 −N2p2β2

∆v
N1p3β1

∆v −1

]
(3.48)

When we define the following terms:

α∗1 =
N1p1α1

∆v
(3.49)

β∗1 =
N1p3β1

∆v
(3.50)

β∗2 =
N2p2β1

∆v
, (3.51)

we can rewrite Eq. 3.48 as follows:

τJ∗2 =

[
α∗1 − 1 −β∗2
β∗1 −1

]
(3.52)

3.3. Group dynamics 47

The condition for the system to be stable is that all real parts of the eigen-
values are negative. When solving for this, we end up with the following two
conditions:

α∗1 < 2 ∩ β∗1β∗2 > α∗1 − 1 (3.53)

These conditions are identical to those derived in the context of hard WTA.
This is not surprising as, by definition, only two units are active in hard WTA.

We will now compare the analytically-derived conditions to results obtained
from rate-based numerical approximations and spiking simulations. Details for
both are provided later in this chapter. The left panel of Fig. 3.7 depicts the
logarized (log10) firing frequency values of the numerically approximated fixed
point analysis. The blank (white) boxes in the heatmap represent explosions in
the numerical approximation. The darkly colored area does, in fact, match the
theoretically determined stable area, defined by β∗1β∗2 > α∗1 − 1 and visually cor-
responding to the entire parameter space except for the bottom-right triangle.
The right panel of Fig. 3.7 depicts simulated firing rates at external firing fre-
quencies. Similar to the left panel, high values correspond to unstable behavior.
While the spiking activity in the theoretically unstable area is not as extreme as
results from the numerical approximation (left panel) indicate, both heatmaps
are, globally, in keeping with the analytically derived conditions.

48 Spiking model dynamics

Figure 3.7: Stable parameter regions according to numerical approximation and
spiking simulation for spiking network containing a single excitatory and a single
inhibitory neuron group. Left panel: Depiction of logarized (log10) firing fre-
quency values. Right panel: Depiction of actual firing rates at external firing
frequencies. The parameters for generating this figure are: β2 = 0.1, s = 0.05,
τ = 20ms, N1 = N2 = 100, ∆v = 1. The connection probability p between
groups was globally set to 0.1. The firing frequency of external input was at 4750
(Hz) and the simulation was run for 500 ms. Note that β∗2 = N2 ∗ p ∗ β2 = 1. α1

and β1 were varied between 0 and 0.19 by steps of 0.01 (equivalent to α∗1 and β∗1
being varied between 0 and 1.9 by steps of 0.1)

3.3.1.2 Phase plane for activity prediction

Similar to our investigation in the previous chapter, we can carry out a phase
plane analysis and predict the activity of units in our spiking model. The left
panel of Fig. 3.8 depicts the phase plane for a network of one excitatory (u1)
and one inhibitory (u2) neuron group: the red and blue line thereby represent
the nullclines of the excitatory and inhibitory groups, respectively, and their
intersections represent fixed points in the given parameter setting. The right
panel of Fig. 3.8 depicts the units’ activity that is predicted based on the fixed
points in the phase plane. Note that, due to the difficulties of deriving fixed
points analytically – particularly, when the number of units is large – we built a
program to calculate a numerical approximation of the fixed points (see Appendix
B).

To test the reliability of our approximation to the fixed points, we engaged
in spiking simulations and compared the results to our numerical predictions.
For the exemplary parameter set that was chosen for Fig. 3.8, such comparison
is depicted in Fig. 3.9. This figure reveals that, for most input frequencies, the
activity levels of our simulations are in agreement with our numerical predic-

3.3. Group dynamics 49

Figure 3.8: Depiction of phase plane and activity prediction. Left panel: Phase
plane of one excitatory and one inhibitory group of LIF neurons. Right panel:
Predicted activity of neuron groups. The dashed line in the right panel repre-
sents the external input based on which the phase plane in the left panel has been
plotted. The parameters for generating this figure are: α1 = 0.05, β1 = β2 = 0.1,
s = 0.05, τ = 20ms, N1 = N2 = 100, ∆v = 1, vrest = 0. The connection prob-
ability p between groups is globally set to 0.1. The firing frequency of external
input was varied between 0 and 5000 (Hz). The activity is calculated through
the numerical approximation of the fixed point.

tions. Exceptions are low-frequency inputs. Here, theory and simulation pro-
duce different results. In particular, our theory predicted hysteresis behavior
for input frequencies between 800 and 1000 Hz. This is evident from the differ-
ence between the forward (referring to gradually increasing external input) and
backward (gradually decreasing input) lines for the first excitatory unit. In our
simulations, however, these two curves are fully overlapping and no hysteresis
can be observed.

While there is a difference between a small part of the low-frequency input
regime, simulation and theory were, overall, found to match for the parameter
setting used for generating Fig. 3.9. This match, however, is not always given.
When increasing the self-excitation parameter α1, the results from simulation
and theory start to diverge. This is shown in Fig. 3.10. Note that as, in general,
no hysteresis is observed in our spiking simulations, backward and forward curves
are fully overlapping and subsequent plots will depict only forward versions of
the simulations.

More systematically, the differences between results stemming from simula-
tions and theory, for different values of α1 and β1, are depicted in Fig. 3.11. We
see that when the self-excitation is large compared to the effect of the inhibition,
this difference increases, especially in regions close to the stability limit.

50 Spiking model dynamics

Figure 3.9: Activity prediction based on numerical approximation and simu-
lation results compared. Forward curves refer to the behavior observed as a
consequence of gradually increasing external input; backward curves to that of
gradually decreasing input. The shaded area is representing ±SD. Simulation
results are presented for the parameters used in Fig. 3.8. Parameters are given
by: α1 = 0.05, β1 = β2 = 0.1, s = 0.05, τ = 20ms. As for the simulations,
for each point depicted, a simulation was run for 500 ms (simulated time). The
external input frequency was varied from 0 to 4750 (Hz) in 20 steps. For the the-
ory component, the numerical approximation was calculated using our numerical
fixed point approximation. The external input was varied with 100 steps. Other
parameters are provided by: N1 = N2 = 100, p = 0.1.

3.3. Group dynamics 51

Figure 3.10: Depiction of the relationship between input and output firing fre-
quencies in theory and simulation when varying the self-excitation parameter α1.
The figure shows that, as α1 increases, theory and simulation differ more strongly.
The simulation setting is the same as in Fig. 3.9 except for the varied α1. All
units are in Hz.

52 Spiking model dynamics

Figure 3.11: Depiction of differences between theoretical results and those stem-
ming from simulations. These differences are calculated as the sum of absolute
differences between theory and simulation for each simulated point along 20 dif-
ferent external input strengths.Therefore, the units are in Hz. These values are
logarized (loge) and color-coded, with bright colors representing large differences
and blank (white) boxes representing parameter sets that lead to unstable behav-
ior. When the self-excitation is strong, compared to the inhibition, the difference
between prediction and simulation becomes larger, especially in those regions
that are close to the stability border. The simulation setting, again, is the same
as in Fig. 3.9 except for the varied α1 and β1.

3.3. Group dynamics 53

3.3.1.3 Effect of synchronization on activity prediction

After having established that the activity prediction tends to fail when the self-
excitation, relative to the inhibition, is strong, we aimed to understand the mech-
anisms behind it. A visual inspection of activity raster plots led us to hypothesize
that activity prediction might fail due to strong phase synchronization. We there-
fore decided to quantify the synchronization using the Phase Synchronization In-
dex (PSI) as provided in Li et al. (2012) and originally presented in Rosenblum
et al. (2001). In the PSI, full synchronization corresponds to an index of 1 while
equally distributed phases in angle space correspond to 0. It is defined as follows:

PSI(t) =
1

N

∣∣∣∣∣∣
N∑
j=1

exp(iφj(t))

∣∣∣∣∣∣ , (3.54)

where

φj(t) = 2πk + 2π
t− tkj

tk+1
j − tkj

,
(
tkj ≤ t < tk+1

j

)
, (3.55)

where φj(t) is the phase of neuron j at time t, tkj is the timing of the kth spike of
neuron j, and i is the imaginary unit (i =

√
−1).

Fig. 3.12a depicts the mean PSI values in different areas of the parameter
space. Blank (white) entries thereby represent either an unstable area or a setting
where PSI could not be calculated (i.e., when one or more neurons in the group
did not spike once throughout the course of the entire simulation). This figure
reveals that when the self-excitation is strong and the inhibition is rather weak,
stronger synchronization is observed. This is related to the deviation between
theory and simulation, as is shown in Fig. 3.12b.

54 Spiking model dynamics

(a) Mean PSI values (b) PSI relation to error in prediction

Figure 3.12: Relation between the phase synchronization index (PSI) and differ-
ence between theory and prediction depicted. Left panel: Mean PSI values for
the excitatory neuron group in different parameter regions. The mean PSI was
calculated by averaging the PSI over the 20 simulations with different external
input strengths. Right panel: Non-random relation between PSI and difference
between theory and simulation visualized. In this plot, instead of the means, all
data points, except those where the PSI could not be calculated, are depicted.
The simulation setting, again, is the same as in Fig. 3.9 except for the varied α1

and β1.

3.3. Group dynamics 55

3.3.1.4 Connection probability and phase synchronization

As a side investigation, we wished to assess the effect of the connection prob-
ability p on the phase synchronization observed. We therefore engaged in the
following simulations: we varied α∗1 and β∗1 across a range of values and set the
connection probability, p, to 0.1, 0.5, and 0.9, respectively. For each combination
of parameters, we simulated the time course for 500 ms (simulated time) when
applying an external input frequency of 5000 Hz. The PSI was assessed and plot-
ted for all combinations, except for when the area was unstable or when the PSI
could not be calculated. The results are shown in Fig. 3.13. They reveal that for
higher connection probabilities, the mean and variance are (slightly) increased.

Fig. 3.14 depicts the results of a second assessment. Here, for each parameter
set, the external input frequency was changed from 250 Hz to 5000 Hz in steps of
250. Each configuration was simulated for a total duration of 500 ms (simulated
time). For the same set of parameters, theoretical firing frequencies were calcu-
lated and absolute differences between theory and simulation summed along all
different external stimulus levels. These values were logarized to facilitate visual
inspection of the heatmap. Comparing the results of Fig. 3.14 to Fig. 3.13, we
see that strongly synchronized areas are associated with large deviations between
theory and simulation. The scatter plot also reveals that when the PSI is high,
the difference between theory and simulation tends to be large.

Interestingly, even in case of high connection probabilities, certain parameter
regions show low synchronization. Choosing these parameters in that context
will lead to predictable behavior of the system (e.g. when α is low and β high).
Moreover, note that for a connection probability of 0.1, when there is a large gap
between simulation and theory, the activity level is overestimated by the theoret-
ical prediction, whereas for p = 0.5 and p = 0.9, the activity was underestimated
as well. In both cases, synchronization leads to a reduction of the precision of
the prediction function.

56 Spiking model dynamics

Figure 3.13: PSI as a function of connection probability. For a wide range of pa-
rameters and as a function of the connection probability p, the PSI was calculated
and plotted as a heatmap. Blank (white) boxes indicate parameter settings refer
to either unstable behavior (see Fig. 3.7) or to a scenario where the PSI could not
be calculated (i.e., one or more neurons did not fire throughout the simulation
period). Note that α∗1 and β∗1 β∗2 include the connection probability and group
size: α∗1 = N1p1α1. Therefore, we adapted the actual α1 and β1 β2 such that all
the α∗1 and β∗1 are the same. In all simulations, β∗1 = 1, N1 = N2 = 100, and
∆v = 1 holds. The scatter plot in the bottom-right corner depicts the relation
between connection probability and PSI. All points represent the PSI values in
the heatmap; the line represents their mean. We see that the mean is loosely
increasing and that for connection probabilities of 0.5 and 0.9, the variance is
further increased.

3.3. Group dynamics 57

Figure 3.14: Effect of connectivity on difference between theory and simulations.
The top-left, top-right, and bottom-left panels depict heatmaps of the sum of
absolute differences between simulation and theory, logarized (loge) for a given
connection probability. The bottom-right panel depicts the relation between the
phase synchronization index and the logarized error between theory and simula-
tion. In our simulations, the external input frequency was varied from 250 Hz to
5000 Hz in 20 steps. The other simulation settings identical with those presented
in Fig. 3.13.

58 Spiking model dynamics

3.3.2 WTA with 3 spiking neuron groups (2 Exc, 1 Inh)

A network with three groups, as depicted in Fig. 2.1 A (without inter-excitatory
connections), can be formalized through the following differential equations:

τ
du1

dt
= −u1 + F (w′, f ′) (3.56)

τ
du2

dt
= −u2 + F (w′′, f ′′) (3.57)

τ
du3

dt
= −u3 + F (β1, Npu1 +Npu2) (3.58)

w′ =
Npu1

f ′
α1 −

Npu3

f ′
β2 +

fext1
f ′

s (3.59)

f ′ = Npu1 +Npu3 + fext1 (3.60)

w′′ =
Npu2

f ′′
α1 −

Npu3

f ′′
β2 +

fext2
f ′′

s (3.61)

f ′′ = Npu2 +Npu3 + fext2 , (3.62)
(3.63)

where N is the number of neurons in each group (setting a common number for
simplicity) and p is the connection probability between groups (set to be identical,
for simplicity).

Similar to the case of two groups, we can apply linearization:

τ
du1

dt
= −u1 +

α1

∆v
Npu1 −

β2

∆v
Npu3 +

s

∆v
fext1 + C (3.64)

τ
du2

dt
= −u2 +

α1

∆v
Npu2 −

β2

∆v
Npu3 +

s

∆v
fext2 + C (3.65)

τ
du3

dt
= −u3 +

β1

∆v
(Npu1 +Npu2) + C, (3.66)

where C is a constant (different in each usage, it is just some constant).

Now, if we define the following variables:

α∗1 =
Npα1

∆v
(3.67)

β∗1 =
Npβ1

∆v
(3.68)

β∗2 =
Npβ2

∆v
, (3.69)

we can obtain the Jacobian for the system with dummy variables:

3.3. Group dynamics 59

τJ∗2 =

 l1α
∗
1 − 1 0 −l3β∗2
0 l2α

∗
1 − 1 −l3β∗2

l1β
∗
1 l2β

∗
1 −1

 (3.70)

This, essentially, yields the same conditions as those presented in Fig. 3.13.

Hard WTA:

α∗1 < 2 (3.71)
β∗1β

∗
2 > α∗1 − 1 (3.72)

Soft WTA:

α∗1 < 1 (3.73)

These conditions we were able to illuminate and validate through spiking
simulations.

First, to provide a visual intuition, Fig. 3.15 shows the time course of the units’
activities for soft WTA (see Fig. 3.15, panel 1) and hard WTA (see Fig. 3.15,
panel 2). Panel A of Fig. 3.15 further depicts the parameter range that results
in stable soft or hard WTA behavior.

Second, similar to Fig. 3.7, the left panel of Fig. 3.16 depicts the logarized
firing frequency values of the numerically approximated fixed points while the
right panel shows the actual firing rates at the external firing frequency. Similar to
the network consisting of two groups, because the stable conditions are identical
in the end, while the spiking results in the unstable area are not as extreme
as the results from the numerical approximation would indicate, both plots are
generally in agreement with the analytically derived conditions.

Third, Fig. 3.17 further illustrates the stable soft and hard WTA parameter
regions in our spiking network, according to both numerical approximation and
spiking simulation. The color of the heatmaps indicates the fraction of the win-
ning group’s average firing rates relative to the sum of firing rates of all groups.
The results are in keeping with our expectation from Fig. 3.15: the area on the
right side of the blue line in Fig. 3.17 represents the hard WTA region while the
parameter space on the left of it is associated with soft or hard WTA. We see
that the ratio of winners in the hard WTA region is markedly high. In the soft
or hard-WTA area, we see a similarly high profile for parts of the heatmap and
reduced activity for other parts. This is expected as the left area includes both
soft and hard WTA.

60 Spiking model dynamics

Figure 3.15: Spiking time course for soft and hard WTA networks with two
excitatory neuron groups and a single inhibitory group upon receiving a 5000 Hz
input with a 0.05 synaptic weight for the winner and a 0.04 weight for the loser.
Panels 1 and 2 depict the units’ activity in soft and hard WTA configurations,
respectively. Panel A depicts the theoretical range of parameters that lead to
stable hard and soft WTA behavior. Parameters in this simulations are β1 = 0.1,
β2 = 0.05, α1 = 0.08 for panel 1, and α1 = 0.12 for panel 2. The external input
in the plots starts at 0 ms. Other parameters are given by: N = 100, p = 0.1,
∆v = 1.

3.3. Group dynamics 61

Figure 3.16: Stable parameter regions according to numerical approximation and
spiking simulation for spiking network containing 2 excitatory and 1 inhibitory
neuron groups. Left panel: Logarized (log10) firing frequency value based on
fixed point. The dark colored area matches the theoretically stable area, as in
Rutishauser et al. (2011): β∗1β∗2 > α∗1−1. Right panel: Average firing rates of the
winner unit at the external firing frequency at 5000 Hz. Parameters are the same
as those used in Fig. 3.15. Note that a few completely black boxes are visible in
the otherwise exploding area. A follow-up investigation revealed that, in these
configurations, there was a supposed-to-be-loser unit that ended up being the
winner. This is due the noise element in the simulations.

62 Spiking model dynamics

Figure 3.17: Illustration of stable soft and hard WTA parameter region in spiking
neural network with 3 neuron groups (2 excitatory, 1 inhibitory) according to
numerical approximations and spiking simulations. The network structure is the
same as the one shown in Fig. 2.1 A. One excitatory unit receives input with 80
% of the strength of the other unit. Simulations were carried out for 1 second
and the average firing frequency ratio was calculated based on the activity in the
latter 500ms of this interval. The x-axis of both panels represents the effective
self-excitation value, i.e., α∗1 = α1Np, where N is the number of neurons in
the group and p is the connection probability. Likewise, the y-axis is given in
β∗1 = β1Np. The color of the heatmaps indicates the fraction of the winning
group’s average firing rates relative to the sum of firing rates of all groups. For
reference, without any interaction or inhibition, the ratio would be 1

1+0.8 = 0.556.
Other parameters in this simulation are set as follows: β∗2 = 1, ∆v = 1. The
external input spike frequency (Poisson) is given by 5000 Hz.

3.3. Group dynamics 63

3.3.3 WTA with 4 spiking neuron groups (3 Exc, 1 Inh)

Here, we wish to carry out a simulation for a 4-unit network of neuron groups
arranged as in network B’ in Fig. 2.7 which is equipped with inter-excitatory
connections α2. The system can be described through the following differential
equations:

τ
du1

dt
= −u1 + F (w′, f ′) (3.74)

τ
du2

dt
= −u2 + F (w′′, f ′′) (3.75)

τ
du3

dt
= −u3 + F (w′′′, f ′′′) (3.76)

τ
du4

dt
= −u4 + F (β1, Npu1 +Npu2 +Npu3) (3.77)

w′ =
Npu1

f ′
α1 +

Np(u2 + u3)

f ′
α2 −

Npu4

f ′
β2 +

fext1
f ′

s (3.78)

f ′ = Np(u1 + u2 + u3) + fext1 (3.79)

w′′ =
Npu2

f ′′
α1 +

Np(u1 + u3)

f ′′
α2 −

Npu4

f ′′
β2 +

fext2
f ′′

s (3.80)

f ′′ = Np(u1 + u2 + u3) + fext2 (3.81)

w′′′ =
Npu3

f ′′′
α1 +

Np(u1 + u2)

f ′′′
α2 −

Npu4

f ′′
β2 +

fext2
f ′′

s (3.82)

f ′′′ = Np(u1 + u2 + u3) + fext3 , (3.83)
(3.84)

where N is the number of neurons in each group and p the connection probability
between groups.

Similar to the 3-unit instance, we can apply linearization:

τ
du1

dt
= −u1 +

Npα1

∆v
u1 +

Npα2

∆v
(u2 + u3)− Npβ2

∆v
u4 +

s

∆v
fext1 + C (3.85)

τ
du2

dt
= −u2 +

Npα1

∆v
u2 +

Npα2

∆v
(u1 + u3)− Npβ2

∆v
u4 +

s

∆v
fext2 + C (3.86)

τ
du3

dt
= −u3 +

Npα1

∆v
u3 +

Npα2

∆v
(u1 + u2)− Npβ2

∆v
u4 +

s

∆v
fext3 + C (3.87)

τ
du4

dt
= −u4 +

Npβ1

∆v
(u1 + u2 + u3) + C. (3.88)

64 Spiking model dynamics

Next, we define the following variables:

α∗1 =
Npα1

∆v
(3.89)

α∗2 =
Npα2

∆v
(3.90)

β∗1 =
Npβ1

∆v
(3.91)

β∗2 =
Npβ2

∆v
, (3.92)

The Jacobian for this system, with dummy variables, can be derived as follows:

τJ∗3 =


l1α
∗
1 − 1 l2α

∗
2 l3α

∗
2 −l4β∗2

l1α
∗
2 l2α

∗
1 − 1 l3α

∗
2 −l4β∗2

l1α
∗
2 l2α

∗
2 l3α

∗
1 − 1 −l4β∗2

l1β
∗
1 l2β

∗
1 l3β

∗
1 −1

 (3.93)

This is equivalent to Eq. 2.40. Therefore, we can simply use the border
conditions for the hard/soft WTA and stable/unstable areas presented in Section
2.3.2. The conditions can be summarized as follows:

Stable hard WTA conditions:

α∗1 < 2 (3.94)
β∗1β

∗
2 > α∗1 − 1 (3.95)

Stable soft WTA conditions:

α∗1 − α∗2 < 1 (3.96)
α∗1 + 2α∗2 < 2 (3.97)

β∗1β
∗
2 >

1

3
(α∗1 + 2α∗2 − 1) (3.98)

In order to produce figures similar to those in the previous sections, we set
α∗2 = 0.1. Fig. 3.18 shows the theoretically derived stable parameter regions with
α∗2 = 0.1. Fig. 3.19 depicts stable/unstable parameter regions, and Fig. 3.20
depicts soft/hard WTA parameter regions obtained through both numerical ap-
proximation and spiking simulation. They are, roughly, in agreement with the
analytical conditions.

To conclude this chapter, we have seen for 3 spiking groups without inter-
excitatory connections and for 4 spiking groups with inter-excitatory connections
that the analytical work carried out in the context of the rate-based model by
Rutishauser et al. (2011) can be translated to spiking neural networks. This
approach can easily be extended to larger networks.

3.3. Group dynamics 65

Figure 3.18: Stability in 4-unit WTA with α∗2 = 0.1. Analytically derived soft
and hard regions are provided.

Figure 3.19: Stable parameter regions according to numerical approximation and
spiking simulation for spiking network containing 3 excitatory and 1 inhibitory
neuron group. The plot and analysis method is adapted from Fig. 3.16. It is
worth noting that there is a small region in the theory (Fig. 3.18) where α∗1 is
smaller than the soft/hard WTA border but only stable with hard WTA (the
green triangle around α∗1 = 1 and β∗1β∗2 = 0). In the numerical simulations, the
parameter sets that fell into this region were only those without any inhibition
(β∗1 = 0) and thus showed unstable behavior as they cannot possibly take the
hard WTA state.

66 Spiking model dynamics

Figure 3.20: Illustration of stable soft and hard WTA parameter region in spik-
ing neural network with 4 neuron groups (3 excitatory, 1 inhibitory) according
to numerical approximations and spiking simulations. The plot and analysis is
adapted from Fig. 3.17. For reference, without any interaction or inhibition, the
ratio would be 1

1+0.8+0.8 = 0.384. Other parameters in this simulation are given
by: β2 = 1, ∆v = 1. The external Poisson input spike frequency (Poisson) is
5000 Hz.

Chapter 4

Discussion

Here, we will review and discuss the main findings of this thesis.

In the second chapter, we focussed on a stability assessment of rate-based neu-
ron models implementing winner-take-all dynamics. As a first step, we thereby
reproduced and slightly modified the work of Rutishauser et al. (2011) who pro-
pose a formalism for neuronal activity within simple WTA networks and present
an analytical approach for assessing their stability. While we were generally able
to reproduce their results, we noticed two technical differences that we consider
worth discussing.

First, while we were able to derive the same set of stability conditions us-
ing both a Hermitian and Jacobian approach, in the discussion of their paper,
Rutishauser et al. (2011) state that they could not have succeeded in deriving an-
alytical conditions using the Jacobian methods as they "rely on linearizations and
do not provide global stability conditions" (Rutishauser et al., 2011). This is true
when the system is non-linear. Indeed, with the activation function max(0, x),
their model does include a non-linearity. However, since they linearize the sys-
tem by introducing the dummy variables li, the global conditions would, in fact,
have been derivable with the Jacobian method. Second, Rutishauser et al. (2011)
derive slightly stronger conditions for soft-WTA stability in a 3-unit network as
they appear to be neglecting a particular parameter region (α2

1− 4β1β2 < 0). As
a consequence, they note that their analytical solution assigns an upper bound to
the parameter β2, which is, in fact, not existent in their simulations. By carrying
out a careful case differentiation, our approach results in no such discrepancy.

Next, we extended the analyses that were originally carried out on a 3-unit
WTA network to networks with an arbitrary number of excitatory units and
a single inhibitory unit. Specifically, by mathematical induction, we derived a
general form of the eigenvalues of the Jacobian of the network and concluded
a series of parameter conditions for hard and soft WTA. This extension could
prove useful when aiming to analyze larger networks. Notably, one of the key
advantages of a rate-based model is its scalability. In the context of dynamic
field theory, where dynamic neural fields assume a continuous representation, a
generalization to arbitrarily many units appears imperative. While we set out

67

68 Discussion

to do so, we have to acknowledge that our analysis assumes a specific type of
connectivity: we assume that all connections between excitatory unit pairs are
given by the same weight. In certain contexts, a more complex structure might
be more desirable. Deriving conditions for more general connectivity patterns
will therefore be a crucial component of future investigations.

In addition to stability conditions in hard and soft WTA regimes, we derived
conditions for hysteresis and self-sustained behavior. This type of assessment
could prove useful to more carefully study the dynamics of spiking networks,
with self-sustained behavior furthermore touching upon an important theme in
the context of working memory and dynamic field theory. A limitation we have to
acknowledge is that the derivation of conditions for hysteresis and self-sustained
behavior is, thus far, restricted to networks containing a single excitatory and a
single inhibitory unit. While this analysis generalizes to hysteresis in large net-
works with hard WTA configurations (the hard WTA conditions are irrespective
of the number of excitatory units as only one winner is selected), the hysteresis
conditions for large soft WTA networks are less clear. We will therefore look into
a broader characterization in the future.

In the third chapter, we were aiming to relate the parameter ranges in which
the rate-based networks were found to exhibit desired behaviors to parameters
in a spiking model. To this end, we derived a function that would capture the
input-output firing rate relationship for a single leaky-integrate-and-fire neuron
when assuming regular spiking input and utilized a strategy resembling the mean-
field approach to generate a spiking neural network and map its parameters to
the rate-based ones. While we generally succeeded in doing so, we here wish to
highlight that this derivation itself is not the key achievement of this thesis –
the mean-field approach is well established and has been applied numerous times
to LIF neurons before. Instead, it only serves as a means to relate the separate
rate-based findings from the second chapter to our spiking neuron models and to,
subsequently, explore the parameter space for winner-take-all dynamics. Having
had specific WTA dynamics and assumptions in mind, we were able to directly
approach a subproblem. As a result, we provide an easy-to-follow derivation
scheme.

Crucially, using this scheme, we were able to map the borders between pa-
rameter ranges that separate some of the different dynamical winner-take-all
behaviors that we explored in the previous step. Specifically, we saw that for 3
and 4 spiking groups with and without inter-excitatory connections, the analyti-
cal work carried out in the context of Rutishauser et al. (2011) can be translated
to spiking neural networks. Based on the analytical derivation for (n+1)-unit
networks, this approach can be extended to various networks, if computational
resources suffice. While we succeeded in mapping soft and hard WTA behavior,
we have to acknowledge that we were not yet able to do so for hysteresis and
self-sustained behavior. This will be the subject of further investigations.

69

Further, based on a number of factors – the input-output relationship, the
system’s phase planes, and numerical approximations of fixed points on those
phase planes – we provided a firing rate prediction. When comparing this predic-
tion to the spiking network simulations, we found that the prediction is accurate
when neurons of the spiking model are weakly connected. For strong connectivity,
however, it becomes inaccurate. This confirms previously discussed limitations of
mean-field approaches. In this context, we also discuss a potential explanation for
the poor activity prediction in certain parameter settings: phase synchronization.

In addition to the points already outlined above, several follow-ups appear
plausible. For instance, one could consider carrying out a more general deriva-
tion of the eigenvalues and resulting WTA conditions in the model by Rutishauser
et al. (2011), assuming that the neighbor connection strengths are following Gaus-
sian distributions rather than assuming they adhere to the strict network struc-
ture we described. Further, one could build a direct connection to the model by
Amari (1977) by introducing sigmoidal activation functions. Given that in the
presence of a refractory period the activation function saturates at some point,
this extension could prove to be a very fruitful one. Finally, one could relate the
work presented here more directly to that of Wilson and Cowan (1973).

Overall, the pipeline presented here could prove useful in assisting the tuning
of spiking neural network parameters to achieve desired behaviors in the WTA-
framework, in particular on neuromorphic hardware. This is also promising in the
context of dynamic neural fields that, under certain constraints, are equivalent to
soft winner-take-all networks and represent "a step toward cognitive neuromorphic
architectures" (Sandamirskaya, 2014).

70 Discussion

Bibliography

Adrian, E. D. and Zotterman, Y. (1926). The impulses produced by sensory
nerve-endings: Part ii. the response of a single end-organ. The Journal of
physiology, 61(2):151–171.

Amari, S.-i. (1977). Dynamics of pattern formation in lateral-inhibition type
neural fields. Biological cybernetics, 27(2):77–87.

Beurle, R. L. (1956). Properties of a mass of cells capable of regenerating pulses.
Philosophical Transactions of the Royal Society of London. Series B, Biological
Sciences, pages 55–94.

Binas, J., Rutishauser, U., Indiveri, G., and Pfeiffer, M. (2014). Learning and
stabilization of winner-take-all dynamics through interacting excitatory and
inhibitory plasticity. Frontiers in computational neuroscience, 8:68.

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and
inhibitory spiking neurons. Journal of computational neuroscience, 8(3):183–
208.

Coombes, S. (2006). Neural fields. Scholarpedia, 1(6):1373.

Creutzfeldt, O. D. (1977). Generality of the functional structure of the neocortex.
Naturwissenschaften, 64(10):507–517.

Douglas, R. J., Koch, C., Mahowald, M., Martin, K., and Suarez, H. H. (1995).
Recurrent excitation in neocortical circuits. Science, 269(5226):981–985.

Douglas, R. J. and Martin, K. A. (2007). Recurrent neuronal circuits in the
neocortex. Current biology, 17(13):R496–R500.

Douglas, R. J., Martin, K. A., and Whitteridge, D. (1989). A canonical micro-
circuit for neocortex. Neural computation, 1(4):480–488.

Fang, Y., Cohen, M. A., and Kincaid, T. G. (1996). Dynamics of a winner-take-all
neural network. Neural Networks, 9(7):1141–1154.

Feldman, J. A. and Ballard, D. H. (1982). Connectionist models and their prop-
erties. Cognitive science, 6(3):205–254.

Gerstner, W. (2000). Population dynamics of spiking neurons: fast transients,
asynchronous states, and locking. Neural computation, 12(1):43–89.

71

72 BIBLIOGRAPHY

Gerstner, W. and Kistler, W. M. (2002). Spiking neuron models: Single neurons,
populations, plasticity. Cambridge university press.

Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014). Neuronal dy-
namics: From single neurons to networks and models of cognition. Cambridge
University Press.

Goodman, D. F. and Brette, R. (2008). Brian: a simulator for spiking neural
networks in python. Frontiers in neuroinformatics, 2:5.

Heeger, D. (2000). Poisson model of spike generation. Handout, University of
Standford, 5:1–13.

Herz, A. V., Gollisch, T., Machens, C. K., and Jaeger, D. (2006). Modeling
single-neuron dynamics and computations: a balance of detail and abstraction.
science, 314(5796):80–85.

Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal
of physiology, 117(4):500–544.

Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-based visual
attention for rapid scene analysis. IEEE Transactions on Pattern Analysis &
Machine Intelligence, (11):1254–1259.

Izhikevich, E. M. (2007). Equilibrium. Scholarpedia, 2(10):2014.

Kutta, W. (1901). Beitrag zur naherungsweisen integration totaler differential-
gleichungen. Z. Math. Phys., 46:435–453.

Lazzaro, J., Ryckebusch, S., Mahowald, M. A., and Mead, C. A. (1989). Winner-
take-all networks of o (n) complexity. In Advances in neural information pro-
cessing systems, pages 703–711.

Li, J., Katori, Y., and Kohno, T. (2012). An fpga-based silicon neuronal network
with selectable excitability silicon neurons. Frontiers in Neuroscience, 6:183.

Maass, W. (1997). Networks of spiking neurons: the third generation of neural
network models. Neural networks, 10(9):1659–1671.

Maass, W. (2000). On the computational power of winner-take-all. Neural com-
putation, 12(11):2519–2535.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133.

Montemurro, M. A., Rasch, M. J., Murayama, Y., Logothetis, N. K., and Panzeri,
S. (2008). Phase-of-firing coding of natural visual stimuli in primary visual
cortex. Current biology, 18(5):375–380.

BIBLIOGRAPHY 73

Riesenhuber, M. and Poggio, T. (1999). Hierarchical models of object recognition
in cortex. Nature neuroscience, 2(11):1019.

Rosenblum, M., Pikovsky, A., Kurths, J., Schäfer, C., and Tass, P. A. (2001).
Phase synchronization: from theory to data analysis. 4:279–321.

Runge, C. (1895). Über die numerische auflösung von differentialgleichungen.
Mathematische Annalen, 46(2):167–178.

Rutishauser, U., Douglas, R. J., and Slotine, J.-J. (2011). Collective stability of
networks of winner-take-all circuits. volume 23, pages 735–773. MIT Press.

Sandamirskaya, Y. (2014). Dynamic neural fields as a step toward cognitive
neuromorphic architectures. Frontiers in Neuroscience, 7:276.

Schöner, G. (2008). Dynamical systems approaches to cognition. Cambridge
handbook of computational cognitive modeling, pages 101–126.

Schwalger, T., Deger, M., and Gerstner, W. (2017). Towards a theory of cortical
columns: From spiking neurons to interacting neural populations of finite size.
PLoS computational biology, 13(4):e1005507.

Segev, I., Burke, R. E., and Hines, M. (1989). Compartmental models of complex
neurons. Methods in neuronal modeling, 63.

Shapiro, M. L. and Ferbinteanu, J. (2006). Relative spike timing in pairs of hip-
pocampal neurons distinguishes the beginning and end of journeys. Proceedings
of the National Academy of Sciences, 103(11):4287–4292.

Szentágothai, J. (1978). The neuron network of the cerebral cortex: A functional
interpretation. the ferrier lecture 1977. Proc R Soc Lond, 201:219–248.

Wilson, H. R. and Cowan, J. D. (1972). Excitatory and inhibitory interactions
in localized populations of model neurons. Biophysical journal, 12(1):1–24.

Wilson, H. R. and Cowan, J. D. (1973). A mathematical theory of the functional
dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2):55–80.

74 BIBLIOGRAPHY

Appendix A

Matlab app for phase plane
visualization

I built an interactive application in MATLAB to visualize the phase plane and
input-output relationship for the 2-unit rate-based model, described in Eqs. 2.102
and 2.103 in the second chapter. In this graphical user interface, a user can
explore what parameter exerts what kind of impact on the phase planes and
activity. A screenshot is provided in Fig. A.1.

Here, I will provide a brief characterization of the core of the model. The
model can be described through two differential equations governing the activity
of the excitatory (u1) and the inhibitory (u2) unit:

τ
du1

dt
= −g1u1 + F (s+ αu1 − β2u2 − T1) (A.1)

τ
du2

dt
= −g2u2 + F (β1u1 − T2), (A.2)

where F (x) = max(0, x), g1 and g2 represent the conductances, T1 and T2 serve as
the thresholds for the activation function, s is the external input to the excitatory
unit, α is the self-excitation weight, β1 is the weight from the excitatory to the
inhibitory unit, and −β2 is the weight from the inhibtory to the excitatory unit.
This set of parameters can be changed in the app.

The left panel of Fig. A.1 shows the phase plane for a parameter set given. The
nullcline for each unit is calculated by setting the left-hand side of the differential
equation to zero:

0 = −g1u1 + F (s+ αu1 − β2u2 − T1) (A.3)
0 = −g2u2 + F (β1u1 − T2). (A.4)

The arrows in the vector field in the left panel of Fig. A.1 indicate the direc-
tion and strength in and with which the system would head if it were placed in

A-1

A-2 Matlab app for phase plane visualization

precisely that state. These quantities can be calculated from the right-hand side
of Eq. A.1 and A.2 at each grid point.

The activity levels, shown in the right panel of Fig. A.1, are calculated by
finding the intersections of the nullclines, i.e., the fixed points. When there are
three fixed points, the two outer ones are stable. The one with lower activity is
assigned to the forward path; the one with higher activity to the backward path.
The dashed red line represents the current input level which corresponds to that
on which the phase plane plot in the left panel is based on.

Figure A.1: A Screenshot of interactive phase plane and activity prediction vi-
sualization tool. The parameters can be changed by moving the slider, and the
graphs are updated dynamically.

Listing A.1: Matlab code for the interactive application.
1 %INTERACTIVE Phase Plane P l o t t e r%
2 set (0 , ’DefaultAxesFontSize’ , 12) ;
3
4 %Defau l t Parameter Values
5 a=1.5 ;
6 b1=1;
7 b2=1;
8 g1=1;
9 g2=1;

10 t1=1;
11 t2=2;
12 s =0.5 ;
13
14 pnames=["a " ," b1 " ," b2 " ," g1 " ," g2 " ," t1 " ," t2 " ," s "] ;
15 num_p=length (pnames) ;
16 p_values=[a ; b1 ; b2 ; g1 ; g2 ; t1 ; t2 ; s] ;
17
18 % S l i d e r Range [Min Max]
19 mm=[0 5 ; %a
20 0 5 ; %b1
21 0 5 ; %b2
22 0 .1 5 ; %g1
23 0 .1 5 ; %g2
24 0 5 ; %t1
25 0 5 ; %t2
26 0 5] ;%s
27

A-3

28 % x1 P lo t t i ng Range
29 x1 = [0 : 0 . 0 1 : 5] ;
30 Num_Arrow=10;
31
32 %%%% UI Part %%%%
33
34 % UI parameters
35 S l ide rLen =0.17;
36 Sl iderWid =0.04;
37 S l i d e rLe f tL =0.75;
38 S l i d e r I n t e r v =0.1 ;
39 SliderBtm =0.125;
40 ad10 =0.01;
41
42
43 % P lo t t t i n g Area
44 f = f igure (’Name’ , ’Phase Plane Interactive Plotter’ , ’NumberTitle’ , ’

off’) ;
45 f . Units=’pixels’ ;
46 SZ=get (0 , ’ScreenSize’) ;
47 f . Po s i t i on =[SZ (3) ∗0 . 2 , SZ (4) ∗0 . 1 , SZ (3) ∗0 . 9 , SZ (4) ∗ 0 . 5] ;
48
49 ax = axes (’Parent’ , f , ’position’ , [0 . 1 0 .18 0 .25 0 . 7]) ;
50 ax (2) = axes (’Parent’ , f , ’position’ , [0 . 4 0 .18 0 .25 0 . 7]) ;
51 i n t s=r e ca l c_r ep l o t_ac t i v i t y (p_values ,mm, ax (2)) ;
52 r e ca l c_rep l o t (p_values , x1 , ax (1) , i n t s) ;
53 bgco lo r = f . Color ;
54
55 % Control s l i d e r s
56 p_ui = uicontrol (’Parent’ , f , ’Units’ , ’normalized’ , ’Style’ , ’text’ , . . .
57 ’String’ , ’Parameter Setting’ , ’FontSize’ , 13 , ’

BackgroundColor’ , bgco lo r) ;
58 p_ui . Po s i t i on = [S l ide rLe f tL , SliderBtm+S l i d e r I n t e r v ∗7 .75 , S l iderLen ,

ad10 ∗ 5] ;
59
60 for j =1:num_p
61 p_ui (j +1) = uicontrol (’Parent’ , f , ’Units’ , ’normalized’ , ’Style’ , ’

text’ , ’BackgroundColor’ , bgco lo r) ;
62 p_ui (j +1) . Po s i t i on = [S l ide rLe f tL−ad10 ∗3 , SliderBtm+S l i d e r I n t e r v

∗(8− j) , ad10 ∗3 , Sl iderWid] ;
63 p_ui (j +1) . S t r ing = pnames (j) ;
64 end
65 for j =1:num_p
66 p_ui (j+num_p+1) = uicontrol (’Parent’ , f , ’Units’ , ’normalized’ , ’

Style’ , ’text’ , ’BackgroundColor’ , bgco lo r) ;
67 p_ui (j+num_p+1) . Pos i t i on = [S l i d e rLe f tL+Sl iderLen−ad10 ∗2 ,

SliderBtm−ad10∗5+S l i d e r I n t e r v ∗(8− j) , ad10 ∗2 , Sl iderWid] ;
68 p_ui (j+num_p+1) . S t r ing =num2str(mm(j , 2)) ;
69 end
70 for j =1:num_p
71 p_ui (j+2∗num_p+1) = uicontrol (’Parent’ , f , ’Units’ , ’normalized’ , ’

Style’ , ’text’ , ’BackgroundColor’ , bgco lo r) ;
72 p_ui (j+2∗num_p+1) . Pos i t i on = [S l ide rLe f tL , SliderBtm−ad10∗5+

S l i d e r I n t e r v ∗(8− j) , ad10 ∗2 , Sl iderWid] ;
73 p_ui (j+2∗num_p+1) . S t r ing =num2str(mm(j , 1)) ;
74 end
75 for j =1:num_p
76 p_ui (j+3∗num_p+1) = uicontrol (’Parent’ , f , ’Units’ , ’normalized’ , ’

Style’ , ’text’ , ’BackgroundColor’ , bgco lo r) ;
77 p_ui (j+3∗num_p+1) . Pos i t i on = [S l i d e rLe f tL+Sl ide rLen+ad10 ,

SliderBtm+S l i d e r I n t e r v ∗(8− j) , ad10 ∗5 , Sl iderWid] ;
78 p_ui (j+3∗num_p+1) . Tag=s t r c a t (’currv_’ , pnames (j)) ;
79 p_ui (j+3∗num_p+1) . S t r ing =num2str(p_values (j)) ;

A-4 Matlab app for phase plane visualization

80 end
81 for j =1:num_p
82 p_ui (j+4∗num_p+1) = uicontrol (’Parent’ , f , ’Units’ , ’normalized’ , ’

Style’ , ’slider’ , . . .
83 ’value’ , p_values (j) , ’min’ ,mm(j , 1) , ’max’ ,mm(j , 2) , ’UserData’

, [j p_values (j)]) ;
84 p_ui (j+4∗num_p+1) . Pos i t i on = [S l ide rLe f tL , SliderBtm+S l i d e r I n t e r v

∗(8− j) , S l iderLen , Sl iderWid] ;
85 p_ui (j+4∗num_p+1) . Tag = s t r c a t (’slider_’ , pnames (j)) ;
86 end
87 for j =1:num_p
88 p_ui (j+4∗num_p+1) . Cal lback = @(es , ed) r e c a l c (es ,num_p, p_ui , x1 , ax

,mm) ;
89 end
90
91 %%%% Functons Implementations %%%%
92
93 % Der i va t i c e c a l c u l a t i o n func t i on f o r phase plane
94 function A=ca l c_de r i va t i v e (x1 , x2 , p_values)
95 a=p_values (1) ;
96 b1=p_values (2) ;
97 b2=p_values (3) ;
98 g1=p_values (4) ;
99 g2=p_values (5) ;

100 t1=p_values (6) ;
101 t2=p_values (7) ;
102 s=p_values (8) ;
103 A=zeros (1 , 2) ;
104 A(1)=−g1∗x1+max(0 , s+a∗x1−b2∗x2−t1) ;
105 A(2)=−g2∗x2+max(0 , b1∗x1−t2) ;
106 end
107
108 % Phase plane p l o t t i n g func t i on
109 function r e c a l c_rep l o t (p_values , x1 , ax , i n t s)
110 a=p_values (1) ;
111 b1=p_values (2) ;
112 b2=p_values (3) ;
113 g1=p_values (4) ;
114 g2=p_values (5) ;
115 t1=p_values (6) ;
116 t2=p_values (7) ;
117 s=p_values (8) ;
118
119 i f i n t s >4
120 x1=linspace (0 , i n t s ∗1 .3 , 500) ;
121 end
122
123 x2_2=(s+(a−g1) .∗ x1−t1) /b2 ;
124 plot (ax , x1 , x2_2 , ’color’ , [1 , 100/255 ,100/255] , ’Linewidth’ , 2) ;
125 hold (ax , ’on’) ;
126 idx=(b1 .∗ x1−t2) >0;
127 x2_1=zeros (length (x1) ,1) ;
128 x2_1(idx)=(b1 .∗ x1 (idx)−t2) /g2 ;
129 plot (ax , x1 , x2_1 , ’color’ , [100/255 ,100/255 ,1] , ’Linewidth’ , 2) ;
130
131 min_y=min(min(x2_1) ,min(x2_2)) ;
132 max_y=max(max(x2_1) ,max(x2_2)) ;
133 y1 = linspace (min(x1) ,max(x1) ,15) ;
134 y2 = linspace (min_y ,max_y, 1 5) ;
135
136 plot (ax , [0 0] , [x2_2 (1) max_y] , ’color’ , [1 , 100/255 ,100/255] , ’

Linewidth’ , 2) ;
137 [x , y] = meshgrid (y1 , y2) ;

A-5

138 u = zeros (s ize (x)) ;
139 v = zeros (s ize (x)) ;
140
141 for i = 1 : numel (x)
142 D = ca l c_de r i va t i v e (x (i) , y (i) , p_values) ;
143 u(i) = D(1) ;
144 v (i) = D(2) ;
145 end
146 quiver (ax , x , y , u , v , ’r’) ;
147 hold (ax , ’off’) ;
148 xlim (ax , [−0 .5 max(x1) +0 .5])
149 ylim (ax , [min_y−0.5 ,max_y+0.5])
150 t i t l e (ax , " Phase Plane ") ;
151 xlabel (ax , ’u_1 excitatory unit activity’)
152 ylabel (ax , ’u_2 inhibitory unit activity’)
153 legend (ax , ’du_1/dt nullcline’ , ’du_2/dt nullcline’ , ’Location’ , ’

northwest’)
154 end
155
156 % Parameter va lue update func t i on
157 function p_values=update_params (num_p, p_ui)
158 p_values=zeros (num_p, 1) ;
159 for j =1:num_p
160 p_values (j)=p_ui (j+4∗num_p+1) . UserData (2) ;
161 end
162 end
163
164 % Act iv i ty c a l c u l a t i o n func t i on
165 function i n t s=r e ca l c_r ep l o t_ac t i v i t y (p_values ,mm, ax)
166 a=p_values (1) ;
167 b1=p_values (2) ;
168 b2=p_values (3) ;
169 g1=p_values (4) ;
170 g2=p_values (5) ;
171 t1=p_values (6) ;
172 t2=p_values (7) ;
173 s=p_values (8) ;
174
175 xs=[mm(8 ,1) : 0 . 0 1 :mm(8 ,2)] ;
176 i f (a−g1)>0
177 i f (b1∗b2+(g1−a) ∗g2)==0
178 u1_ba=−1;
179 else
180 u1_ba=((xs−t1) .∗ g2+b2∗ t2) /(b1∗b2+(g1−a) ∗g2) ;
181 end
182 idx=b1 .∗u1_ba−t2 <0;
183 u1_ba(idx)=0;
184 idx1=(xs−t1) /(g1−a) <0;
185 u1_ba(idx&idx1)=−1;
186 e l s e i f (a−g1)==0
187 u1_ba=((xs−t1) .∗ g2+b2∗ t2) /(b1∗b2+(g1−a) ∗g2) ;
188 idx=b1 .∗u1_ba−t2 <0;
189 u1_ba(idx)=0;
190 else
191 u1_ba=((xs−t1) .∗ g2+b2∗ t2) /(b1∗b2+(g1−a) ∗g2) ;
192 idx=b1 .∗u1_ba−t2 <0;
193 u1_ba(idx)=(xs (idx)−t1) /(g1−a) ;
194 idx=u1_ba<0;
195 u1_ba(idx)=0;
196 end
197
198 u2_ba=max(0 , b1 .∗u1_ba−t2) ;
199 u2_ba(u1_ba==−1)=−1;

A-6 Matlab app for phase plane visualization

200
201 idx=(xs−t1) . / b2<0;
202 u1_fo=u1_ba ;
203 u1_fo (idx) =0;
204 u2_fo=max(0 , b1 .∗ u1_fo−t2) ;
205 u2_fo (u1_fo==−1)=−1;
206
207 i f (b1∗b2+(g1−a) ∗g2)>0
208 i n t s =((s−t1) .∗ g2+b2∗ t2) /(b1∗b2+(g1−a) ∗g2) ;
209 else
210 i n t s =−1;
211 end
212
213
214 plot (ax , xs , u1_fo , ’Linewidth’ , 2 , ’color’ , [1 , 171/255 , 100/255]) ;
215 hold (ax , ’on’) ;
216 plot (ax , xs , u1_ba , ’Linewidth’ , 2 , ’color’ , [1 , 100/255 , 100/255]) ;
217 plot (ax , xs , u2_fo , ’Linewidth’ , 2 , ’color’ , [100/255 , 171/255 , 1]) ;
218 plot (ax , xs , u2_ba , ’Linewidth’ , 2 , ’color’ , [100/255 , 100/255 , 1]) ;
219 y_max=max(max(u1_ba) ,max(u2_ba)) ;
220 i f y_max==0
221 y_max=mm(8 ,2) ;
222 end
223
224 i f (sum(u1_ba==−1)>0)
225 plot (ax , [s s] , [−1 y_max] , ’:r’ , ’Linewidth’ , 2) ;
226 ylim ([−1 y_max]) ;
227 else
228 plot (ax , [s s] , [0 y_max] , ’:r’ , ’Linewidth’ , 2) ;
229 ylim ([0 y_max]) ;
230 end
231 hold (ax , ’off’) ;
232 legend (ax , ’u_1 forward’ , ’u_1 backward’ , ’u_2 forward’ , ’u_2

backward’ , . . .
233 ’current input’ , ’Location’ , ’northwest’)
234 xlabel (" External input (s) to the ex c i t a t o r y un i t ") ;
235 ylabel (" Act i v i ty ") ;
236 t i t l e (" Input Output Re la t i on sh ip ") ;
237
238 end
239
240 % Cal lback func t i on
241 function r e c a l c (es ,num_p, p_ui , x1 , ax ,mm)
242 es . UserData (2)=es . Value ;
243 p_ui (es . UserData (1)+3∗num_p+1) . S t r ing=num2str(es . Value) ;
244 p_values=update_params (num_p, p_ui) ;
245 i n t s=r e ca l c_r ep l o t_ac t i v i t y (p_values ,mm, ax (2)) ;
246 r e ca l c_rep l o t (p_values , x1 , ax (1) , i n t s) ;
247 end

Appendix B

Numerical fixed point
approximation program

In order to numerically approximate fixed points for interacting spiking neuron
groups, I wrote a program that follows a gradient of the vector field in the phase
plane of the system and detects fixed points when it does not move anymore.
This program can be used for arbitrary number of units with any types of con-
nections by handing the number of units and the corresponding weight matrix
as arguments. As part of this program, I applied the (classical) Runge-Kutta
method (Kutta, 1901, Runge, 1895).

To allow for fast computation, I wrote the program in C and compiled it
to a dynamic link library (DLL) file (in the form of .dll, executable using the
Windows operating system) in order to call the function from Python using the
ctypes library. Note that setting types and proper transformation of variables is
required. To make the program easier to use it, I developed a wrapping Python
function that calls the C function using the dll (List.B.3).

Here, I wish to describe the parameters specific to this numerical approxima-
tion function and their values in the usage in this thesis:

(1) The update coefficient: delta (δ). Let ui[t] be the value for unit i at the
time step t. In the next time step, the update can be described as follows:

ui[t+ 1] = ui[t] + δ(τ
dui[t]

dt
), (B.1)

where δ defines the size of the update step. When this value is large, the conver-
gence to the fixed point is fast. When the size of the update step is too large,
however, precision problems can emerge. In the usage of this program in this
thesis, I set: δ = 5.0× 10−4

(2) The convergence judgement border: epsilon (ε) Let g[t] be the vector
of gradients for all units in the network at time step t. The numerical approxi-
mation is judged to be converged when:

B-1

B-2 Numerical fixed point approximation program

||g[t]|| < ε. (B.2)

In this thesis, ε = 1.0× 10−6

(3) The maximum number of steps: max_size. Sometimes it can take long
for the system to converge or not converge at all when the parameter set is not in
the stable area. In those cases, it is important to stop the update at some point
by setting the maximum number of update steps. In this thesis, max_size=105.

Listing B.1: fixedpointRK.c: the main file
1 #include <s td i o . h>
2 #include <s t d l i b . h>
3 #include <math . h>
4 #include "fixedpoint.h"
5 #define PI 3.14159265359
6
7
8 // F−F func t i on (without c e i l i n g func t i on) c a l c u l a t i o n
9 double f f c u r v e (paramset param , double f , double w){

10 double f r eqout , a , p ;
11
12 p=f /(f+1/param . tau) ;
13
14 i f (f>0&&w>0){
15 a=1−param . v_th∗(1−p) /w;
16 } else {
17 a=0;
18 }
19 i f (a>0){
20 f r eqout =1/(param . t_ref+(log (a) / log (p)) / f) ;
21 } else {
22 f r eqout =0;
23 }
24 return f r eqou t ;
25 }
26
27 // Slope c a l c u l a t i o n with the Runge−Kutta method
28 int ca lc_def ferent ia l_RK (double grad [] , paramset param , double w_mat

[] , double x_prev [] , double f_ext [] , int group_size []) {
29
30 int i , j ;
31 double d i f f , w, f ;
32 int N = param . num_groups ;
33 double p = param . con_p ;
34 double (∗k) [4] ;
35 double (∗ temp) [3] ;
36 double ∗gp ;
37
38 k = (double (∗) [4]) mal loc (s izeof (double) ∗N∗4) ;
39 temp = (double (∗) [3]) mal loc (s izeof (double) ∗N∗3) ;
40 gp=mal loc (s izeof (double) ∗N) ;
41
42 for (j =0; j<N; j++){
43 gp [j]=(double) (group_size [j]) ∗p ;
44 }
45
46 for (j =0; j<N; j++){
47 w=0; f =0;
48 for (i =0; i<N; i++){

B-3

49 w+=w_mat [j ∗(N+1)+i]∗ gp [i]∗ x_prev [i] ;
50 f+=gp [i]∗ x_prev [i] ;
51 }
52 w+=w_mat [j ∗(N+1)+N]∗ f_ext [j] ;
53 f+=f_ext [j] ;
54
55 i f (f >0){
56 w/=f ;
57 }
58 k [j] [0]=−x_prev [j]+ f f c u r v e (param , f , w) ;
59 temp [j] [0]= x_prev [j]+0.5∗param . de l t a ∗k [j] [0] ;
60 }
61 for (j =0; j<N; j++){
62 w=0; f =0;
63 for (i =0; i<N; i++){
64 w+=w_mat [j ∗(N+1)+i]∗ gp [i]∗ temp [i] [0] ;
65 f+=gp [i]∗ temp [i] [0] ;
66 }
67 w+=w_mat [j ∗(N+1)+N]∗ f_ext [j] ;
68 f+=f_ext [j] ;
69
70 i f (f >0){
71 w/=f ;
72 }
73 k [j] [1]=− temp [j] [0]+ f f c u r v e (param , f , w) ;
74 temp [j] [1]= x_prev [j]+0.5∗param . de l t a ∗k [j] [1] ;
75 }
76 for (j =0; j<N; j++){
77 w=0; f =0;
78 for (i =0; i<N; i++){
79 w+=w_mat [j ∗(N+1)+i]∗ gp [i]∗ temp [i] [1] ;
80 f+=gp [i]∗ temp [i] [1] ;
81 }
82 w+=w_mat [j ∗(N+1)+N]∗ f_ext [j] ;
83 f+=f_ext [j] ;
84
85 i f (f >0){
86 w/=f ;
87 }
88 k [j] [2]=− temp [j] [1]+ f f c u r v e (param , f , w) ;
89 temp [j] [2]= x_prev [j]+param . de l t a ∗k [j] [2] ;
90 }
91 for (j =0; j<N; j++){
92 w=0; f =0;
93 for (i =0; i<N; i++){
94 w+=w_mat [j ∗(N+1)+i]∗ gp [i]∗ temp [i] [2] ;
95 f+=gp [i]∗ temp [i] [2] ;
96 }
97 w+=w_mat [j ∗(N+1)+N]∗ f_ext [j] ;
98 f+=f_ext [j] ;
99

100 i f (f >0){
101 w/=f ;
102 }
103 k [j] [3]=− temp [j] [2]+ f f c u r v e (param , f , w) ;
104 }
105 for (j =0; j<N; j++){
106 grad [j]=(k [j] [0]+2∗ k [j] [1]+2∗ k [j] [2]+ k [j] [3]) /6 ;
107 }
108
109 f r e e (k) ;
110 f r e e (gp) ;
111 f r e e (temp) ;

B-4 Numerical fixed point approximation program

112 return 0 ;
113 }
114
115
116 // Fixed po int search by f o l l ow i n g the grad i en t
117 int f i xedpo int_search (double cord [] , double x [] , paramset param ,

double def_cor [] , double w_mat [] , double f_ext [] , int group_size
[]) {

118
119 int t , i ;
120 double ∗x_prev , ∗grad ;
121 double d i f f e r e n c e ;
122 int N = param . num_groups ;
123
124
125 x_prev = mal loc (s izeof (double) ∗ N) ;
126 grad = mal loc (s izeof (double) ∗N) ;
127
128 for (i =0; i<N; i++){
129 x [i]=def_cor [i] ;
130 x_prev [i]=x [i] ;
131 }
132
133 for (t=1; t<param . max_size ; t++){
134 d i f f e r e n c e =0;
135 calc_def ferent ia l_RK (grad , param ,w_mat, x_prev , f_ext ,

group_size) ;
136 for (i =0; i<N; i++){
137 x [t ∗N+i]=x [(t−1)∗N+i]+param . de l t a ∗grad [i] ;
138 d i f f e r e n c e+=(x [t ∗N+i]−x_prev [i]) ∗(x [t ∗N+i]−x_prev [i]) ;
139 i f (x [t ∗N+i]<0){
140 x [t ∗N+i]=0;
141 }
142 x_prev [i]=x [t ∗N+i] ;
143 }
144 d i f f e r e n c e=sq r t (d i f f e r e n c e) ;
145 i f (d i f f e r e n c e <param . ep s i l o n) {
146 break ;
147 }
148 }
149 for (i =0; i<N; i++){
150 cord [i] = x_prev [i] ;
151 }
152
153 f r e e (x_prev) ;
154 f r e e (grad) ;
155
156 return t ;
157 }
158
159 // Main func t i on in the d l l form
160 __declspec (d l l e xpo r t) int a c t i v i t y_pr ed i c t i on (int f l a g [] , double

cord_al l [] , double x [] , paramset param , double def_cor [] ,
double w_mat [] , double f_ext [] , int group_size []) {

161
162 int f r eq , f ;
163 int N=param . num_groups ;
164
165 f r e q =0;
166 f l a g [f r e q]= f ixedpo int_search (&cord_al l [N∗ f r e q] , x , param,&def_cor

[0] ,w_mat,& f_ext [N∗ f r e q] , group_size) ;
167 for (f r e q =1; f req<param . f_ext_res ; f r e q++){
168 f l a g [f r e q]= f ixedpo int_search (&cord_al l [N∗ f r e q] , x , param,&

B-5

cord_al l [N∗ f r eq−N] ,w_mat,& f_ext [N∗ f r e q] , group_size) ;
169 }
170 for (f r e q =0; f req<param . f_ext_res ; f r e q++){
171 f l a g [param . f_ext_res+f r e q]= f ixedpo int_search (&cord_al l [N∗(

param . f_ext_res+f r e q)] , x , param,& cord_al l [N∗(param .
f_ext_res+f r e q)−N] ,w_mat,& f_ext [N∗(param . f_ext_res−f r e q)
−N] , group_size) ;

172 }
173
174 return 0 ;
175 }

Listing B.2: fixedpoint.h: the headder file
1 #ifndef __FIXEDPOINT_H__
2 #define __FIXEDPOINT_H__
3
4 #include <math . h>
5
6 typedef struct parameter_set {
7 int num_groups ;
8 double con_p ;
9

10 double tau ;
11 double v_th ;
12 double t_re f ;
13
14 double ep s i l o n ;
15 double de l t a ;
16
17 int max_size ;
18
19 int f_ext_res ;
20 } paramset ;
21
22
23 __declspec (d l l e xpo r t) int a c t i v i t y_pr ed i c t i on (int f l a g [] , double

cord_al l [] , double x [] , paramset param , double def_cor [] , double
w_mat [] , double f_ext [] , int group_size []) ;

24
25
26 #endif

Listing B.3: fixedpoint.py: the wrapper python function
1 from ctypes import ∗
2 from br ian2 import second
3 import numpy as np
4
5
6 # Struct to be passed to the C func t i on .
7 class Paramset (St ruc ture) :
8 _f ie lds_ = [
9 ("num_groups" , c_int) ,

10 ("con_p" , c_double) ,
11 ("tau" , c_double) ,
12 ("v_th" , c_double) ,
13 ("t_ref" , c_double) ,
14 ("epsilon" , c_double) ,
15 ("delta" , c_double) ,
16 ("max_size" , c_int) ,

B-6 Numerical fixed point approximation program

17 ("f_ext_res" , c_int)]
18
19
20 # Python i n t e r f a c e func t i on f o r c a l l i n g the C func t i on .
21 def calc_numerica l (params , stim , w_mat, l i b) :
22
23 param = Paramset ()
24 param . num_groups = params [’num_exc_pop’] + params [’num_inh_pop’]
25 param . con_p = params [’conn_p’]
26 param . tau = params [’tau’] / second
27 param . v_th = params [’thr’]
28 param . t_ref = params [’refp’] / second
29
30 param . ep s i l o n = params [’epsilon’]
31 param . de l t a = params [’delta’]
32 param . max_size = params [’max_size’]
33 param . f_ext_res = params [’f_ext_res’]
34
35 N = param . num_groups
36
37 f_ext_min = np . append (np . t i l e (st im . stim_min , params [’num_exc_pop

’]) , np . t i l e (0 , params [’num_inh_pop’]))
38 f_ext_max = np . append (np . t i l e (st im . stim_max , params [’num_exc_pop

’]) , np . t i l e (0 , params [’num_inh_pop’]))
39
40 def_cor = np . t i l e (0 , N)
41
42 group_size = np . t i l e (params [’num_per_pop’] , N)
43
44 f_ext = [0 for i in range (N ∗ param . f_ext_res)]
45
46 for i in range (param . f_ext_res) :
47 for j in range (N) :
48 f_ext [N ∗ i + j] = f_ext_min [j] + (f_ext_max [j] −

f_ext_min [j]) ∗ i / param . f_ext_res
49
50 IntFlag = c_int ∗ (2 ∗ param . f_ext_res)
51 DoubleCord = c_double ∗ (N ∗ 2 ∗ param . f_ext_res)
52 DoubleX = c_double ∗ (N ∗ param . max_size)
53
54 DoubleDefcor = c_double ∗ N
55 DoubleWmat = c_double ∗ ((N + 1) ∗ N)
56 DoubleFext = c_double ∗ (N ∗ param . f_ext_res)
57 IntGs i ze = c_int ∗ N
58
59 f l a g = [0 for i in range (2 ∗ param . f_ext_res)]
60 cord_al l = [0 for i in range (N ∗ 2 ∗ param . f_ext_res)]
61 x = [0 for i in range (N ∗ param . max_size)]
62
63 f lag_c = IntFlag (∗ f l a g)
64 cord_all_c = DoubleCord (∗ cord_al l)
65 x_c = DoubleX (∗x)
66 def_cor_c = DoubleDefcor (∗ def_cor)
67 w_mat_c = DoubleWmat(∗w_mat)
68 f_ext_c = DoubleFext (∗ f_ext)
69 group_size_c = IntGs i ze (∗ group_size)
70
71 l i b . a c t i v i t y_pr ed i c t i on . argtypes = [c_void_p , c_void_p , c_void_p

, Structure , c_void_p , c_void_p , c_void_p , c_void_p]
72 l i b . a c t i v i t y_pr ed i c t i on . r e s type = c_int
73
74 l i b . a c t i v i t y_pr ed i c t i on (po in t e r (f lag_c) , byre f (cord_all_c) ,

byre f (x_c) , param , byre f (def_cor_c) , byre f (w_mat_c) ,

B-7

75 byre f (f_ext_c) , byre f (group_size_c))
76 f_ext_np = np . array (f_ext) . reshape ((param . f_ext_res , param .

num_groups))
77 flag_np = np . array (f lag_c) . reshape ((param . f_ext_res , 2))
78 cord_all_np = np . array (cord_all_c) . reshape ((2 , param . f_ext_res ,

param . num_groups))
79 cord_all_np [1 , : , :] = np . f l i p (cord_all_np [1 , : , :] , a x i s =0)
80
81 return f_ext_np , cord_all_np , flag_np

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Winner-take-all networks
	1.2 Different implementations of WTA networks
	1.2.1 Rate-based neuron models
	1.2.2 Spiking neuron models

	1.3 Goals and structure of this thesis

	2 Continuous model dynamics
	2.1 The WTA model by Rutishauser et al.
	2.2 Stability analysis
	2.2.1 Jacobian analysis
	2.2.2 Hermitian analysis
	2.2.3 Numerical simulations

	2.3 Extensions of the model
	2.3.1 3 units = (2 Exc, 1 Inh), with excitation (1, 2)
	2.3.2 4 units = (3 Exc, 1 Inh), with excitation (1, 2)
	2.3.3 n+1 units = (n Exc, 1 Inh), with excitation (1, 2)

	2.4 Hysteresis and self-sustained behavior
	2.4.1 Introduction
	2.4.2 Phase portrait and derivation of conditions
	2.4.3 Phase plane and prediction of activity

	2.5 Overview of different behavior classes

	3 Spiking model dynamics
	3.1 Dynamics of individual model neurons
	3.1.1 Introducing the leaky-integrate-and-fire model
	3.1.2 Relationship between input and output frequency
	3.1.2.1 Analytical derivation
	3.1.2.2 Validation through simulation
	3.1.2.3 Linearity of F-F curves as a function of weight
	3.1.2.4 Linearization by series expansion

	3.2 From single neurons to groups
	3.2.1 Using Poisson spike trains as input
	3.2.2 Combining different weights and frequencies

	3.3 Group dynamics
	3.3.1 Analysis of 2 spiking neuron groups (1 Exc, 1 Inh)
	3.3.1.1 Stability analysis based on rate-based results
	3.3.1.2 Phase plane for activity prediction
	3.3.1.3 Effect of synchronization on activity prediction
	3.3.1.4 Connection probability and phase synchronization

	3.3.2 WTA with 3 spiking neuron groups (2 Exc, 1 Inh)
	3.3.3 WTA with 4 spiking neuron groups (3 Exc, 1 Inh)

	4 Discussion
	A Matlab app for phase plane visualization
	B Numerical fixed point approximation program

