
Velocity Control and SLAM With Spiking
Neural Networks for an Omni-Directional

Robotic Vehicle

Report Semester Project

Mario Blatter

D-ITET

July 21, 2017

Advisors: Dr. Yulia Sandamirskaya, Prof. Tobi Delbrück
Institute of Neuroinformatics, ETH Zürich, Uni Zürich

Abstract

The project at hand consisted of two major components. Both involved an omni-
directional robotic vehicle (Omnirobot) with three Swedish wheels actuated by ser-
vomotors and equipped with a number of sensors (a ring bumper, an inertial mea-
surement unit and and wheel encoders). Task one was the improvement of a software
environment to communicate with the robots firmware in order to be able to navi-
gate it and communicate with it in various ways. Furthermore, path integration was
performed. The resulting data was used to visualize the robot’s trajectory. Then, a
velocity controller was implemented.
In the second part it was aimed at implementing an algorithm similar to SLAM
(simultaneous localization and mapping) making use of the functions programmed
in the previous part. The reconfigurable on-line learning spiking (ROLLS) neuro-
morphic processor was intended to be used for learning a simple map of the robot’s
environment using the device’s bumpers as feedback and the plastic synapses on
the chip. The entire software was run on the miniature computer board parallella,
which connected all the hardware components.
However, due to the breaking of the robot’s microprocessor board, only a simplified
version of the second part could be performed. Namely, this was to show learning
between neurons representing a simulated location and a ’collision population’ as a
proof of concept.

1 Introduction

Autonomous robotic navigation currently is a large field of research. Many ap-
plication can be thought of being implemented towards goals such as optimizing
trajectories, minimizing the error in movement, obstacle avoidance or simultaneous
localization and mapping.
The latter is a common computational problem in robotic mapping and autonomous
driving and has been studied extensively. It is know under the abbreviation SLAM
and is an unsupervised machine learning problem. It deals with the fact that when
trying to create a map of an environment and concurrently locate a robotic agent’s
position in it, errors inherent to the system will lead to a misinterpretation. One
way to lessen this problem is the use of a controller. In this project, a standard PID
controller will be implemented for this purpose. Additionally however, some sort
of active feedback is needed, in order to continuously update and correct the map.
This can be understood as a form of learning.
A simplified version of this mapping problem is aimed at in the second part of
this project. But unlike most SLAM solutions learning will not be conducted in
software but on a reconfigurable on-line learning spiking neuromorphic chip. The
necessary elements that allow such an implementation are presented in the following
paragraphs.

Omni-Directional Movement The idea behind omni-directional, or holonomic,
movement is the facilitation of control and increased speed [1]. With the robot hav-
ing three wheels positioned at an angle of 120◦ relative to each other, one obtains
three degrees of freedom (the speed in x- and y-direction, plus the rotation around
its own axis). This allows changing directions and orientation without having to do
complicated maneuvres to correctly position the wheels as would be the case with
two-wheeled robots.
There has been extensive work on how to control these types of robots by employ-
ing the corresponding kinematic models [1–4]. In this project, an interface for
navigating an omni-directional robotic vehicle will be presented.

Localization: Path Integration and Visualization An important aspect for
robot navigation is knowing its position at any time. Since relying on outside sen-
sory information is not desired, self-localization is used. This is usually done by path
integration, also known as odometry. Path integration is a means of recording and
updating a vector to a given origin when moving. Two pieces of information need to
be retrieved, the distance covered and the direction of movement [5]. Both can be
obtained from the wheel encoders using the aforementioned kinematic models [6].
One must be aware of the system’s inherent errors, i.e. of systematic (e.g. different
wheel diameters, uncertainty in exact position), as well as non-systematic nature
(e.g. slipping wheels) [7]. This project implements path integration for the Om-
nirobot by processing regularly queried data from its wheel encoders. This includes
parsing the received events, computing the direction of movement and the covered
distance, as well ass visualizing the outcome in a dedicated application.

1

Learning on ROLLS neuromorphic processor As the final part, this project
aimed at implementing, in a simple form, mapping and learning on the reconfig-
urable on-line learning spiking (ROLLS) neuromorphic processor [12].
Neuronal learning can be implemented on the ROLLS processor using several neuron
populations. These desired neuronal groups can be connected with plastic synapses
and learning can happen. The learning will be based on spike-timing dependent
plasticity (STDP) [8] meaning that the updating of the synapses’ weight depends
on the time between the pre- and post-synaptic activity. This leads to long-term po-
tentiation (LTP, increase) or long-term depression (LTD, decrease) of the weight [9].
It has been shown that this strengthening of the synapses is sensitive to the cor-
relation of the pre-synaptic activity, which is why this type of learning is called
correlation (also Hebbian) learning [10].
In this project, neuronal learning between the robot’s location in space and the colli-
sion with its surroundings - represented by a neuron population of its own each - was
to be shown. Due to the breaking down of the robot, learning between simulated
location data and collisions was shown.

2 Methods

2.1 Hardware

Robot The Omnirobot (or Omnibot) is an omni-directional vehicle with three
Swedish wheels located at an angle of 120◦ relative to each other. The device
including firmware was provided by NST from TU Munich. It uses an LPCexpresso
board with a ARM Cortex-M3 microcontroller from NXP. It is equipped with three
Dynamixel MX-28 servomotors , one for each wheel. The servos have a sensor - so-
called wheel encoders - that can provide feedback on their current angular position
and with this the motors’ rotational speed. The device is further equipped with a
nine-axis inertial measurement unit (IMU) MPU-9250 from InvenSense and a ring
bumper with six sensors around its outer diameter (see figure 1).
The device uses three 11.1 V lithium-ion polymer batteries to power the servomotors.
They batteries are further connected to a board converting to 3.3 and 5 V supply
voltage for the electronics .
The communication, occurring via a serial interface, is done by streaming strings to
the robot’s microprocessor upon which the robot could also send back strings (e.g.
containing its sensors’ current read-out). For this purpose, the microprocessor’s
embedded UARTs are used. Both USB and Wi-Fi transmission are possible. In this
project, only USB was used using a UART-to-USB converter. The current list of
commands can be found in the appendix.

Parallella The Embedded Parallella board P1602 (see figure 2) is a high perfor-
mance computing platform figuring a Xilinx dual-core main processor (Zynq ARM
A9) and a 16-core co-processor from Epiphany (E16G301).
The device is running Linux (Ubuntu ARMv7). Connections include 5V power,
micro-USB, Ethernet, HDMI and micro-SD. Additionally, there is a direct interface
to the ROLLS neuromorphic processor (described below) - i.e. a Paracard board

2

Figure 1: Image of the Omnirobot without top cover

with the ROLLS chip on top is mounted back-to-back via expansion connectors.
The Ethernet port allows the user to connect the board to the network and access
it remotely via ssh.
During operation, the board gets hot. The temperature in the main processor can
reach 95C. This is the reason why it has a large heat sink mounted on top and
should be operated with a fan or at least be placed on its side allowing for faster
heat dissipation.

ROLLS The reconfigurable on-line learning spiking (ROLLS, see figure 2) neuro-
morphic processor [8] figures 256 neuron like analog integrated circuits and 131072
synapses (256x256x2).
The neurons are modeled as adaptive exponential integrate-and-fire neurons [11].

Figure 2: Image of the parallella board during operation (left) and the ROLLS neuromor-
phic processor mounted on its backside (right)

3

Figure 3: Screenshot of the JavaGui visualizing the ROLLS events during operation

The synapses represent a connection between a neuron-pair. There exist non-plastic
(programmable) and plastic synapses, allowing the modeling of both short-term and
long-term plasticity mechanisms imitating the actual biological dynamics and en-
abling on-line learning capabilities. The ability of the neuromorphic chip to emulate
learning with biologically accurate dynamics stems from the use of a differential pair
integrator (DPI) with its dynamic behavior showing time constants in the range of
hundreds of milliseconds.
An additional set of ”virtual” synapses allows the application of stimuli from the con-
trolling parallella board. Communication with the chip is based on an address-event
representation (AER) protocol, which means events are transferred asynchronously
with an address as identifier and a timestamp.
The configuration of the biases for the chip’s circuit elements can be done using
a Java Web application GUI (see figure3). It is possible to define time-constants,
thresholds and a range of other parameters by setting bias currents. On the hard-
ware side these settings are translated from the digital configuration logic via a
bias current reference by effectively applying a gate voltage resulting in the desired
current. [12].

2.2 Software

NCSRobotLib The NCSRobotLib is a C++ library developed at INI to interface
with various devices. It allows for controlling Omnirobot and ROLLS, as well as
others such as eDVS and Pushbot. This software environment enables the user to
implement multi-agent system with the mentioned devices where data (events) can
be shared among them. To do so, a device can be registered as a listener to another
one. Upon receiving a new event, a device will notify all its listeners which will then
execute a function corresponding to the type of event. The function to be executed
is specified for each agent individually (made possible because it inherits from a
”DeviceListener.h” implementing a virtual function).

4

ROLLS/aerctl In order to be able to communicate with the ROLLS chip a soft-
ware environment had been developed by researchers at INI. It figures a ROLLS-
Device.cpp, included in the NCSRobotLib, enabling the creation of the architecture
on the neuromorphic chip including the assignment of neuron groups and plastic
and non-plastic synapse connection between them. A set of functions collected in
aerctl.cpp then handles the communication via the AER protocol.

3 Implementation

3.1 Part 1 - Omnirobot Controller

3.1.1 Kinematics and Wrapper to Microprocessor

In order to be able to properly navigate the Omnirobot and obtain its sensors’ val-
ues a wrapper to the microprocessor’s command list is needed, i.e. several functions
based on combinations of microprocessor commands. The most important among
them was being able to set its speed in a specified x,y-direction and controlling its
orientation. A valuable contribution had already been made by Michel Frising in
his semester project ”An embedded neuromorphic computing platform for cognitive
agents” [14]. In this framework the velocity can be set via an angle Φset, indicat-
ing the direction from the robot’s point of view, and a speed v in that direction,
superposed with a rotational component θ̇set (the yaw) resulting in the following
representation of the movement with respect to the robot’s local frame of reference
(see figure 4): ẋlocalẏlocal

θ̇

 =

v ∗ cos(Φset)
v ∗ sin(Φset)

θ̇set

 (1)

However, improvement and updating was needed, because the firmware did not sup-
port as many microprocessor commands as were available at that moment. This
especially concerned the implementation of the drive command, as setting the servo
speeds differed.
The underlying kinematic models [4, 15], presented here, were adapted to the Om-
nirobot’s geometric layout (see figure 4).
The robot wheels’ rotational speeds can be expressed with the device’s speed in a
global two-dimensional system (ẋ, ẏ) and its yaw θ̇:ϕ̇0

ϕ̇1

ϕ̇2

 = 1/r

−sin(Φ + α0) cos(Φ + α0) L
−sin(Φ + α1) cos(Φ + α1) L
−sin(Φ + α2) cos(Φ + α2) L

ẋẏ
θ̇

 (2)

with r being the wheels’ radius (2.54cm), L their distance from the center (8cm),
αi their respective angular displacement (see figure 4) and Φ the robot’s heading
direction.
The equation for the representation in the robot’s local frame of reference reduces

5

Figure 4: Schematic of the Omnirobot with its wheels, ϕ̇i and bumpers Bi

to the following when when replacing Φ with 0:ϕ̇0

ϕ̇1

ϕ̇2

 = 1/r

−sin(α0) cos(α0) L
−sin(α1) cos(α1) L
−sin(α2) cos(α2) L

ẋlocalẏlocal
θ̇

 (3)

In the Omnirobot’s case one angle α0 is subject to definition and the other two
will have a value of α0+120◦ and α0+240◦, respectively (see schematic in figure
4). Assuming α0 = 240◦ (in order to conform with the built-in x and y directions
obtained when sending command ”!Dx,y,a”) this further simplifies into:ϕ̇0

ϕ̇1

ϕ̇2

 = 1/r

√3/2 −1/2 L
−1 0 L

−1/2 −
√

3/2 L

ẋlocalẏlocal
θ̇

 (4)

thus yielding the following equations when inserting equation (1):

ϕ̇0 = v/r ∗ sin(Φ− 240◦) + L/r ∗ θ̇ (5)

ϕ̇1 = v/r ∗ sin(Φ) + L/r ∗ θ̇ (6)

ϕ̇2 = v/r ∗ sin(Φ− 120◦) + L/r ∗ θ̇ (7)

The required wheel speeds could therefore be calculated. Then, the robot’s firmware
allowed controlling its servomotors individually by sending the corresponding strings
to the microprocessor.
When wanting to express the current speed as a function of the wheels’ speed, the
following relation can be used:ẋẏ

θ̇

 = r

 cos(30◦) 0 −cos(30◦)
−cos(60◦) 1 −cos(60◦)

1/3L 1/3L 1/3L

ϕ̇0

ϕ̇1

ϕ̇2

 (8)

6

The corresponding global orientation simply results by a coordinate system trans-
formation by the heading angle Φ:ẋẏ

θ̇

 = r

cos(Φ) −sin(Φ) 0
sin(Φ) cos(Φ) 0

0 0 1

 cos(30◦) 0 −cos(30◦)
−cos(60◦) 1 −cos(60◦)

1/3L 1/3L 1/3L

ϕ̇0

ϕ̇1

ϕ̇2

 (9)

3.1.2 Reacting to Environment

Bumper Ring The robot’s bumpers could be used to detect objects and walls
in the robot’s environment. It consisted of six switches which change their binary
state when the surrounding bumper ring pushes towards it and upon release. The
bumpers were arranged around the circumference of the robot (see figure 4). Each
of the six switches was encoded with one bit putting the bumper value in a range of
0 (no bumper actuated) to 63 (all bumpers activated (theoretical since in practice
there is no case in which all switches get turned on at the same time because the
ring is stiff)).
The index i of the bumper Bi (see figure 4) corresponds to the number of the bit,
starting with bumper B0 being the LSB and B5 the MSB.

Processing The bumper values could be queried from the robot by sending ”?Ib”
(see appendix). This was done once in every sampling period in a query thread
(see figure 7). Then they were read and parsed and stored in a struct with the
corresponding timestamp and its time difference to the last bumper event - just like
the encoder values which will be explained later in more detail.
In the case of a detected bumper signal other than 0, the robot was given a new
direction within a window of 75◦ opposite to the bumper such that it moves away
from the object it bumped into.

3.1.3 Path Integration and Visualization

Path Integration The data required for path integration is the robot’s speeds
and its heading direction. This can be express with the vector (ẋ, ẏ,θ̇). Thus, by
knowing the robot’s wheel speeds ϕi the kinematic relations (8) and (9) may be used
for the calculations.
In the ideal case of continuous data no further calculation would be needed. However,
with discrete data as is the case here, the covered distance needs to be computed.
This works as follows: The path integration function received the current encoder
value deltas, as well as their respective timestamp and time delta. With these
values, path integration was done by applying the kinematics matrix calculation
(see equations 8 and 9) onto the encoder values to find the respective delta in
x and y direction and the change in the robot’s heading. The result was then
added to a globally stored struct containing the previous location of the robot. This
whole process was done for local (within the robot’s frame of reference) and global
coordinates. For the global representation it was assumed that the robot had moved
into the same direction during the whole last sampling period. Path integration thus
occurred in accordance with the coordinate transform described in equation (9).

7

Figure 5: An example of the visualization of the robot’s movement in a two-dimensional
system (x-axis: red, y-axis:green)

Visualization In order to be able to track and record the robot’s movement some
sort of visualizer was desired. For this project, an already existing visualizer ap-
plication based on Qt widgets was used. It was provided by Julien Martel and
consisted of a receiver and a transmitter. To have the desired data transferred, a
few alteration to the protocol for the communication of those two had to be made
(e.g. defining what type of data was to be sent). Furthermore, since the Omnirobot
is moving in a two-dimensional system only, the viewing directions of the visualizer
were adjusted (see figure 5 for an example).
The data which the transmitter received was the result of the path integration. For
longer intervals without new data, the previous direction and speed was assumed.

3.1.4 Velocity Controller

This part of the project aimed at implementing a standard PID controller [2,3] for
the Omnirobot’s velocity. This was done by using the wheel encoder values as a

Figure 6: Schematic of the PID controller implemented in this project

8

Figure 7: Schematic of the thread setup used for data acquisition and controlling

feedback which allowed the computation of the current speed and its difference to
the set value which was stored and updated each time new drive commands were
sent. A block diagram of the controller architecture is shown in figure 6.
To do so, a series of threads was used (see figure 7). One thread (denoted query-
Thread) would simply loop and query the robot with the ”Get encoder values”
command (”?PA”) on a regular basis. This sampling time was defined to be 50
milliseconds. The effective implementation was a call of a write function to the file
identified by the filedescriptor corresponding to the Omnirobot’s USB port. This
function transferred the corresponding strings to the microprocessor.
A second thread was run to perform the reading of the serial bus when available.
For this, a read function was called which would read out characters from the serial
bus and store them in a character array.
In the controlling thread, the sequenced events were processed. This contains pars-
ing according to their respective type (buffer and encoder events were treated). The
events would get stored in a private struct. Upon finished parsing of encoder events,
they were further processed. In a first step, the respective difference to the previous
encoder values and timestamp was calculated. Then, the corresponding wheel ve-
locity was computed from these two values. This velocity was compared to the most
recent set value to compute the error. This error was then multiplied and integrated
and used to calculate the control command to be sent to the robot.

3.2 Results Part 1

In order to be able to estimate the error in the robot’s movement with and without
the controller, a measurement series was executed. For this purpose, the robot was
moved in a certain pattern in an ”arena” with distances marked on the ground. The
driven shapes were a square, a triangle and a circle. For the square and the triangle
the shape was repeated three times per measurement sequence. The sequences were
recorded with a handheld Sony digital camera mounted over the arena. Plus, the
resulting path integration data was logged (see figure 8). Then, the average speed,
as well as the offset at the end of each sequence, was measured by eye using a media
player and the written scales.
This was done for the robot without the controller, as well as with a controller and
different parameters. For the circle only the resulting offset upon completion was

9

Figure 8: Recorded pattern logged by the visualizer based on the path integration data it
had received. The driven sequence was three squares. The expected pattern is shown as a
red dashed box. Logging started at the light green marking and ended at the red one.

measured as it was not feasible to determine the covered distance accurately enough
due to the non-linear movement. The results are presented in tables 1 and 2.
At that point, the controller still took into account values for all timestamps which
was one reason why it performed very bad. Unfortunately, due to the robot’s micro-
processor becoming non-functional no further tests could be conducted. However,
the robot had a sufficiently low error in movement even without the controller.

3.3 Discussion and Outlook Part 1

A major issue faced was that data available to the controller were of the form seen
in figure 9. During most of the time, for durations of up to over one second no new

Table 1: Offset analysis

Speed Sequence ∆x [cm] ∆y [cm] ∆θ Distance
covered [cm]

25% 3x square 0 -1 <5◦ 213
25% 3x square 5 12 80◦ 213

(with controller)
50% 3x square 0 -1 <5◦ 277.5
50% 3x triangle 3 0 <5◦ 205.5
50% 1x circle 1 -1 <5◦ 144
50% 1x circle 1 -1 <5◦ 144

10

Table 2: Average speed analysis

Speed Sequence Avg. speed [cm/s] Ref speed [cm/s] Error in %

25% 3x square 5.92 5.90 0.3
50% 3x square 11.55 11.81 -4.8
50% 3x triangle 11.24 11.81 -2.2

values (i.e. no character string at all) were present.
There are several possibilities that could lead to such a lack of data: The write or
read operation are not executed as desired, data is not sent or transmitted within
that time or data acquisition is not done properly.
It can be noted that when data points were received they seemed to be of the correct
current encoder state - except for a few exceptions. This assumption is based on the
fact that for a continuous turning of the wheel with no acceleration the data points
follow the expected linear curve in the range 0 to 4096 (see figure 9). It is therefore
believed that some kind of delay must be present somewhere in the system.
When taking a closer look at the data distribution it can be seen that the density
of data points is higher after the periods without data than right before. This can
also be confirmed when looking at the computed time difference between those data
points which was in the order of a few milliseconds instead of the expected 50 ms. In
order to further investigate this behavior, it was checked and affirmed that the write
commands are sent in a regular fashion - i.e. without any similarly large delays.
A test with the robot’s stream mode - within which the microprocessor sends the
desired data in a regular fashion without the need of query commands - was also
conducted but showed the exact same issues. Furthermore, even when using a very
simple program using only a read and write function each in one single thread did
not yield different results either.
Then, by evaluating the elapsed run time of the read function it could be seen that
it does not return for comparable time durations. When no data is present at the
port, read() would return immediately. It is thus more likely that the read function
has received some (possibly invalid) data but no endline character which leaves it
”hanging”, i.e. waiting for more data to arrive. This would mean that the data ac-
quisition or transmission from the Omnirobot is showing a delay or malfunctioning.
When looking at the robot’s side, various sources could be the reason for this, most

Figure 9: Visualization of parsed encoder values and their corresponding time of arrival.
The maximum value is 4096. Conducted at constant speed for wheel 0.

11

Figure 10: Schematic of the interfaces intended to be used in this project

of which cannot be determined because of the lack of knowledge of both its firmware
and hardware. However, there is evidently a timeout for reading the wheel encoder’s
values. This was discovered when investigating faulty encoder values (-128) which
always lead to an increased response time in the order of 30 ms. Consequently,
the delay does not come from the encoder readout and is likely to stem from data
processing or communication channels.
This obviously posed a serious and unsolvable problem for the controller, as during
this time, no feedback can be obtained and thus no controlling was possible. Fur-
thermore, at the beginning, the very small time differences between events arriving
after a period with no data lead to the calculation of false speeds. This was due to
the computation time having a too high influence on the result. Because with such
small time-deltas even small deviations from the correct value resulted in a large
error when executing the division for the speed calculation.
After the discovery of this issue and in order to still get the robot running with the
controller, events that arrived with timestamps below and above a certain threshold
(as a percentage of the sampling time) were neglected (i.e. the speed set by the last
drive command was assumed so it would not lead to an error that gets processed by
the controller).
What was even more unfortunate is the fact that the robot broke a couple of weeks
before the end of the project. From the investigations performed it can be assumed
that the microprocessor board is broken (the power board still produces the desired
voltages and the servomotors are able to set the torque).
This lead to unfinished testing of the controller (e.g. the controller’s performance
when only using potentially valid data) and no tuning of its parameters could be
conducted.
The lack of continuous data obviously also affected the performance of the visual-
izer and the interaction of the robot with its environment. On the one hand, the
visualizer application would experience jumps from one data point to the next with
a great distance between them and can therefore not indicate the robot’s position at
some points in time. To work around this issue, it was decided to generate location
data points when no new event arrived for a certain period of time (defined as twice
the sampling period). This was done by assuming the same movement as calculated

12

Figure 11: Interfaces as used for the simulation

for the last data point.
On the other hand, the time for recognizing a bumper event had occurred, could be
delayed by up to one second owing to the delay. This makes the system rather slow
in reacting to its environment. It also means that the stimulation of the bumpers
below one second could go unnoticed by the system, because no data acquisition
took place in that time.
Furthermore, apparently bumper 4 was broken and could therefore not serve for
providing feedback. The reason remains unknown. The electrical connection to the
switch seem to be intact.

3.4 Part 2 - Simple Map Building on the ROLLS neuromor-
phic processor

3.4.1 Localization and Mapping using the Omnirobot

Combining path integration performed on the parallella and the feedback from the
bumpers it is possible to implement a simple SLAM algorithm taking advantage
of the properties of the ROLLS neuromorphic chip. For this, an architecture with
three populations of neurons was defined on the ROLLS processor: Two with 64
neurons each to represent the robot’s position in space and a third figuring 16
neurons standing for collisions with the surrounding. Upon a change in the robot’s
location or the state of its bumpers - i.e. when a new event arrived - the ROLLS
controller running on the parallella and registered as a listener to the Omnirobot
would stimulate the corresponding neurons. By defining plastic synapses between
the location and the collision neurons, the coordinates of such a collision could be
learned. The proposed architecture using also the controller and the visualization is
shown in figure 10.

3.4.2 Learning with simulated data

Due to the robot becoming non-functional, alternatives to the described task had
to be sought. In order to still use the existing framework and the ROLLS processor

13

Figure 12: Illustration of the architectures used for the ROLLS experiments. During the
first experiment, one location population was used (left). It was later increased to four
(right) in a second experiment.

to show learning, it was decided to use simulated location and collision data. This
resulted in the need for slightly changed interfaces in accordance with figure 11.
For a first experiment, the neuron architecture shown in figure 12 on the left was
applied, meaning 64 neurons (No. 0 to 63) were used to represent the simulated
location. Another group of 16 neurons was stimulated when a simulated collision
took place (explained later). A connection with plastic synapses was established
from the location neuron group to the collision one, thus enabling learning between
the two.
A ’data generator’ was used to simulate a simple one-dimensional environment. It
counted up and down within a finite interval (0,63) with a fixed increment and at a
defined frequency (50 ms). This effectively generated a simulated location point with
each iteration, mimicking the results of path integration. After each counting step,
a warn event was issued to the DataGenerator’s listeners (in this case the ROLLS
controller). There, this data was used to stimulate the corresponding neuron on the
neuromorphic processor.
For the simulation of the collision event the existing TerminalInputDevice.cpp was
adapted to react to a specific key input (chosen to be ”w”). This key could be
actuated manually when in the active terminal, and served as the initiation of the
simulated collision. Upon that, the entire collision population of neurons on ROLLS
was stimulated. During this entire process, all events could be logged and saved
with a timestamp.
In order to obtain good and reproducible learning results, adequate biases for the
ROLLS processors needed to be selected. It was decided to start with a modified
version of the ’plastic’ biases provided by Raphaela Kreiser (see appendix).
A total of three different experiment series were conducted. For the second one,
four instead of one location population were used (see figure 12, left). Only two of
them were connected to the collision population, meaning only they were able to
learn a connection. This was employed to achieve spatial resolution of the learned
connection. Reasons for this measure will be explained below.

14

Figure 13: Visualization of active plastic synapses with stimulation (bottom) and without
stimulation (top) between neurons

3.4.3 Results Part 2

For the evaluation of the first experiment, a program provided by Raphaela Kreiser
was used. It enabled reading out the state of the plastic synapses after an experi-
ment run had been completed. For this, the ROLLS controller had to be switched
off and the plastic synapse connections between the neurons were disabled. Then,
each neuron and its plastic synapses were stimulated iteratively while logging the
received events with their timestamps. Each iteration takes place within 700 mil-
liseconds. The resulting plot thus represents the sequentially stimulated neurons as
a continuously increasing line. Within the same time window, the (pre-synaptic)
neuron’s plastic synapses are stimulated, thus enabling invoking a response of the
post-synaptic in the case of an active plastic synapse. This directly translates into
a learned connection. Hence, each neuron active during the same time window as a
neuron on the continuous line can be interpreted as an active plastic synapse.
The results of the first experiment are shown in figure 13. Due to non-ideal biases at
the time, even without any simulated collision some collision neurons are active (fig-
ure 13, top). This can be interpreted as a noise floor concerning the active synapse
connections. Learning can thus only be shown in comparison with this noise floor.
The bottom plot shows the same populations after a constant stimulation was ex-
ecuted by continuously pressing the correct key in the terminal. Clearly, a greater
number of neurons fire, therefore proving that a connection between the two popu-
lation had been learned.
The issue that presented itself during this experiment was that the same effect could
be observed upon simulating a collision only for a short time. In that case, only the
synapses between the concurrently active location neurons should have learned and
not all of them.

15

Figure 14: Plot of the events sent by the ROLLS during experiment 2. Proof of learning
occurring on the ROLLS chip. After stimulation (start indicated by red dot) of the collision
population (light green, neurons 130 to 145) it gets reactivated every time the corresponding
position (triangles between 0 and 63) gets stimulated again. The four different location
populations are colorized for better understanding).

It is argued here that an endless learning loop is formed: Once the collision popula-
tion is stimulated externally by pressing a key, the connection between the currently
active location neuron and the collision population is learned. These neurons keep
firing as long as the location neuron is active. It was in the nature of the data
generator’s design that the next location neuron will get activated while the previ-
ous neuron is still active. Due to the collision population still being potentiated -
because of the learned connection with the previous neuron - this plastic synapse
will also learn, even though no collision is actually occurring anymore. This effect
cannot stop and consequently all plastic synapses will be active after one iteration
over the whole space.
This is why in a second experiment, conducted on Raphaela Kreiser’s parallella, it
was decided to split the one location population into four (see figure 12).
With only two non-neighboring groups being connected to the collision population,
it was possible to stop the above described effect by giving the collision neurons
enough time to stop firing before learning with the next location neuron would
(falsely) happen. Figure 13 proves the forming of a learned connection between two
populations upon a simulated collision. This can be interpreted as a very simple
map with a simulated wall or object at locations represented by the two groups 0
and 2.
It is therefore successfully shown, that with the proposed setup learning between
individual neuron groups can be achieved on the ROLLS neuromorphic processor.
Note that the collision population remains potentiated for a short period of time
even after the corresponding pre-synaptic neurons in the location population have
stopped firing. This speaks in favor of the before proposed explanation of an endless
learning phenomenon. By using a different neuronal architecture in experiment two,
this effect could be interrupted and a very basic spatial resolution of the learned col-
lision could be achieved.
In order to further improve this resolution, the simulation was slightly adapted for a
third experiment, also conducted on Raphaela Kreiser’s parallella. Upon the arrival

16

Figure 15: Plot of the neuron events sent by ROLLS during experiment 3. For better
understanding, each neuron was assigned a different color and any collision event received
within the same time frame as a location neuron got the same one. Simulated collision
events are marked at the bottom of the plot with a red dot.

of a new event, a neuron would get stimulated many times with the total stimula-
tion duration averaging between 1 and 2 seconds. The main difference was that the
stimulation of a new location neuron would be delayed by a certain time. This was
defined to be 750 milliseconds. The goal of it being to give the collision neurons
time to cease firing and hence stop the aforementioned endless learning loop. Addi-
tionally, only every third neuron was stimulated. Furthermore, for this experiment
the biases ”sequence2 3” were used, because for this particular case the ones used
before resulted in a permanent potentiation of the collision neurons. This might
be due to a difference in temperature resulting in altered behavior. It was later
repeated and similar results could be obtained. The results are shown in figure 15.
Note that for this experiment, the location population was shifted up by 25 neurons
to avoid any interference by neuron 22 which was constantly firing, even though it
was stimulated at all. For the plot it was neglected. Additionally, neurons 137 and
138, in the collision population, falsely learned connections and kept firing, which is
why they are also ignored in the final plot. The same effects could already be seen
in experiment two (see figure 14).
The results prove the successful learning of two positions of collision events, now
using only a single neuron group for the location. The first collision occurs while
neurons 61 and 64 are active (red and yellow). The renewed activation of these
two neurons invokes a short potentiation of the collision neurons, thus successfully
showing the plastic synapses being active. The same could also be shown a second
time with even just a single neuron (34) having formed the connection.

3.4.4 Discussion and Outlook Part 2

The successful learning of a simulated location to a collision population is a proof
of concept for the mapping using the ROLLS neuromorphic processor and enables
a series of application to be performed (discussed later).
The results of the experiment may be improved by further tuning the ROLLS biases

17

and the delay and frequency of stimulation upon the arrival of a new location event.
Furthermore, changing the frequency and number of stimulation of the collision pop-
ulation might yield more plastic synapse connections being active, hence providing
a clearer signal. It should also be attempted to get the plastic synapses connected
to neurons 137 and 138 to only learn when they have to. This is most likely to be
achieved by changing the ROLLS biases, but shifting the group to a different set of
neurons might also work, as different neurons show slightly different behavior.
In a next step, one could rather easily extend the simulation to two dimensions using
a third population representing y-locations.
It should further be aimed at getting rid of the falsely firing neuron 22 as this could
interfere with the learning in case it is assigned a plastic synapse connection.
There currently exist two parallella boards with one ROLLS processor each. The
best and last experiment was conducted on Raphaela’s parallella after it failed to
work on the other one. It is likely that the exact same biases will lead to a different
or no result at all on the other ROLLS. This statement remains to be verified in the
future.

4 Final Discussion and Outlook

The work done in this project laid the foundation for controlling a omni-directional
robotic vehicle. Given a functional Omnirobot device is available, a characterization
of the controller could be pursued - i.e. for periods where data with valid timestamps
is available. There is even a chance that with the new microprocessor data streams
will be continuous at all times. In that case, the controller’s parameters can be
tuned in order to find a good performance. It can also be optimized by increasing
the sampling rate. So far, measurements were conducted at 50 milliseconds sampling
time only. However, 10 milliseconds are realistic. Further decrease would likely
require parallelization of the parsing and path integration computations.
Given the low error in movement of the robot, controlling of the robot might not be
a top priority - at least at low to moderate speeds.
In a second step the learning described in this report could be applied using the
events provided by the parsing and path integration functions from the Omnirobot
class as described in part 2 of this project. This should also be easily extensible
to two dimensions, enabling map building of the robot’s actual surrounding. Given
learning is successfully and reliably working one could then use the active plastic
synapse connections to predict imminent collisions and act accordingly. Possibilities
therefore include obstacle avoidance and a bit more advanced (though still basic)
SLAM.
The software environment in place also allows for the extension of the system with
devices such as the eDVS enabling the use of vision to improve the performance of
the setup.

18

5 Final Conclusion

In this project, a PID controller for an omni-directional robotic vehicle was at-
tempted to build. However, due to delayed data responses from the robot, it could
not have been considered functional. Proper characterization of the controller was
made impossible due to the device’s microcontroller break down.
For the second part, learning on a reconfigurable on-line learning spiking (ROLLS)
neuromorphic processor between two populations of neurons could successfully be
shown. It is therefore possible to learn the location of a collision on hardware. This
serves as a proof of concept showing that simultaneous localization and mapping
of a robotic vehicle is possible using sensory data (if available) and the ROLLS
neuromorphic processor enabling learning.

Acknowledgments

Many thanks go to Yulia Sandamirskaya for helping me with this project and pro-
viding valuable feedback and ideas. I also thank Tobi Delbrück for making this
project possible.
Special thanks go to Raphaela Kreiser for her great and patient help with the ROLLS
biases.
I further thank Julien Martel for providing the visualizer application and anyone
who helped develop the NCSRobotLib.

19

References

[1] D. J. Balkcom et al., “The time-optimal trajectories for an omni-directional ve-
hicle,” The International Journal of Robotics Research, vol. 25, no. 10, pp. 985–
999, 2006.

[2] F. Ribeiro et al., “Three Omni-Directional Wheels Control on a Mobile Robot,”
Control 2004, 2004.

[3] X. Li and A. Zell, “Motion control of an omnidirectional mobile robot,” Infor-
matics in Control, Automation and Robotics, 2009.

[4] P. F. Muir and C. P. Neuman, “Kinematic modeling of wheeled mobile robots,”
Journal of Robotic Systems, vol. 4, pp. 281–340, April 1987.

[5] D. Lambrinos et al., “Mobile robot employing insect strategies for navigation,”
Robotics and Autonomous Systems, vol. 30, no. 1, pp. 39–64, 2000.

[6] J. Inthiam and C. Deelertpaiboon, “Self-localization and navigation of holo-
nomic mobile robot using omni-directional wheel odometry,” October 2015.

[7] J. Borenstein et al., “Mobile robot positioning: Sensors and techniques,” Jour-
nal of Robotic Systems, vol. 14, pp. 231–249, April 1997.

[8] N. Qiao et al., “A reconfigurable on-line learning spiking neuromorphic pro-
cessor comprising 256 neurons and 128K synapses,” Frontiers in Neuroscience,
vol. 9, p. 141, April 2015.

[9] L. F. Abbott and S. B. Nelson, “Synaptic plasticity: taming the beast.,” Nature
neuroscience, vol. 3, pp. 1178–1183, November 2000.

[10] S. Song et al., “Competitive Hebbian learning through spike-timing-dependent
synaptic plasticity.,” Nature neuroscience, vol. 3, pp. 919–926, September 2000.

[11] G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-power spiking
neurons and bistable synapses with spike-timing dependent plasticity,” IEEE
Transactions on Neural Networks, vol. 17, pp. 211–221, jan 2006.

[12] T. Delbruck, R. Berner, P. Lichtsteiner, and C. Dualibe, “32-bit configurable
bias current generator with sub-off-current capability,” in ISCAS 2010 - 2010
IEEE International Symposium on Circuits and Systems: Nano-Bio Circuit
Fabrics and Systems, pp. 1647–1650, IEEE, may 2010.

[13] A. Dietmüller and H. Blum, “Obstacle avoidance and target acquisition with
an event-based camera on a neuromorphic chip,” 2017.

[14] M. Frising, “An embedded neuromorphic computing platform for cognitive
agents,” 2016.

[15] M. I. Ribeiro and P. Lima, “Kinematics models of mobile robots,” 2002.

20

Commands:
 ?I[g/a/c/b/A] - get (g)yro, (a)ccelero, (c)ompass, (b)ump, or (A)ll
 !I[1/0],f,data - Set SD Stream: On/Off, frequency, data
 - where data is a bitmask with the following bit to sensor
correspondence:
 - bumper 0, wheel speed 1, gyrometer 2, accelerometer 3, euler
angles 4, compass 5
 - servo voltage 6, servo position 7, servo temperature 8, servo
load 9

 !E[0,1,2] - 0: All answ. on(default), 1: Cmd Echo off, 2: All answ. off

 !Dx,y,a - drive towards x(fwd), y(swd); a(rot) [-70...70]
 !DDx,y,a - same as !Dx,y,a but with decay after 1s
 ?D - get x,y,rot

 ?B - get battery Voltage
 ?Ca - ping servo with id a

 !Sa=b - set servo id a to id b
 !S=b - set servo id to b

 ?L[0-16] - get servo load
 ?LA - get all servos load

 ?Mid,address,len - read servos memory. Returned data is hexadecimal
 !Wid,address,len,bytes - write servo memory. Bytes have to be specified as
 decimal integers separated by commas.

 !P[0-16][s] - set servo speed
 !PA[s] - set all servos speeds

 ?S[0-16] - get servo speed
 ?SA - get all servos speed

 !G[0-16] - set servo goal position (in joint mode)

 ?P[0-16] - get servo position
 ?PA - get all servos positions

 ?T[0-16] - get servo temperature
 ?TA - get all servos temperatures

 !T(0|1)[0-16][t] - enable/disable and set servo torque

 ?V[0-16] - get servo voltage
 ?VA - get all servos voltages
 R - reset board
 P - enter reprogramming mode

 ?? - help

A Omnirobot Command List

21

B ROLLS biases used for this project (Omnibot-

Plastic2)

22

