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Chapter 1

Introduction

1.1 Motivation

Much research has been done in the field of Machine Learning and reli-
able learning algorithms for prediction and decision making were devel-
oped. Neural networks were used to implement these learning functions.
However such algorithms follow von Neumann computer architectures and
utilize digital logic. These algorithms are fast and precise, however they
underperform routine cognitive tasks that seem to be simple for biological
systems. In addition, the power consumption of digital von Neumann com-
puter architectures is immense compared to the one of the human brain and
the performance of machine learning algorithms, especially in tasks that in-
volve autonomous realtime interactions with the environment, suffers in the
presence of noisy and uncontrolled sensory input (Ambrogio et al., 2016). In
contrast to computational and organisational principles like Boolean logic,
common in present day computers, the nervous system carries out robust
computation using hybrid analog and digital processing elements. Com-
putation is distributed, event-driven, collective and massively parallel, and
it makes use of adaptation, selforganization, and learning. Neuromorphic
circuits aim to recreate the biophysics and network architectures behind bi-
ological neural processes using the physics of silicon. (Indiveri and Liu,
2015) Hybrid digital and analog circuits were constructed that emulate the
basic dynamical properties of biological neurons and synapses (Douglas,
Mahowald, and Martin, 1901). These circuits have been integrated into very
large scale integration (VLSI) devices in order to build real-time sensory
systems (Liu and Delbruck, 2010). The resulting compact, real-time, and
energy-efficient devices can be used to build neuromorphic behaving sys-
tems that have cognitive abilities and it can perform learning tasks. In fact
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this hardware harnests some of the outstanding properties of neuronal com-
puting substrate: the parallel nature of computation, co-location of memory
and processing, and low-power event-based computing principle. Not only
are neuromorphic systems a tool that can be used to translate knowledge
about neuroscience into these systems and create computation similar to
the brain, they can also give an understanding about the model limitations
leading further research in the right direction. A recent addition to VLSI
implementation of neuromorphic systems is the Re-configurable On-Line
Learning Spiking (ROLLS) neuromorphic processor. (Qiao et al., 2015) This
device has the novel ability to carry out on-chip on-line learning and to con-
figure the neuron connections into the desired neural network. The learning
circuits of the chip enable the network to find solutions for tasks that require
adaptation to input signals, and that can interact in real-time with its envi-
ronment.

In this project the ROLLS device is configured in a soft winner-take-all (WTA)
network, which has been proposed as a neural model to explain object recog-
nition (Riesenhuber and Poggio, 1999b). The winner-take-all network car-
ries out a hybrid analog and digital computing mechanism. It integrates the
strength of local stimuli in an analog fashion but at the same time selectively
amplifies the strongest and suppresses the weakest signal. In this work, a
WTA architecture is being used to carry out an unsupervised learning task.
Unlabled input data arrives at the plastic synapses of the 256 Integrate and
Fire (I&F) neurons coded as 10 Hz or 110 Hz frequencies distributed over
256 input synapses. The aim is that the network finds a hidden structure
within the data and learns to classify it accordingly.

In order to show the vast learning abilities that the ROLLS neuromorphic
processor can carry out, a neural-dynamic architecture for serial-order mem-
ory, routed in neuroscience and in cognitive science was implemented on
the ROLLS chip in order to perform a sequence learning task which can be
used on embedded systems to perform cognitive tasks in realtime. The pro-
posed neuromorphic cognitive architecture has a high potential for cogni-
tive robotics since it can process large amounts of noisy sensory sginals com-
ing from neuromorphic sensors in parallel. Eventually a robot can learn to
associate input scenes from a low-power DVS camera using a silicon retina
(Lichtsteiner and Delbruck, 2005) with actions, all based on the hierarchi-
cal neural network architecture implemented on the ROLLS neuromorphic
processor.
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The field of behavioral robotics developed neuronal controllers for behav-
ing systems which are currently used for insect-like robots (Manoonpong,
Parlitz, and Wörgötter, 2013) and robotic salamanders (Ijspeert et al., 2007).
These can adapt to changing environments and work well in settings where
reactive behavior is enough. However, they do not scale up to more com-
plex behvaiours, which require a representation of the environment. In this
project we aim for cognitive robotics that are able to understand complex
scenes and that can plan longer sequences accordingly. A dynamical sys-
tems approach from the field of cognitive science was used to find an ar-
chitecture that gives a suitable representation of the environment to enable
intelligent (Thelen and Smith, 1994).

Here, behavior of an agent is generated by a dynamical system, defined
over behavioural variables that describe the immediate sensory state of the
agent and its possible movements. In this framework, the concept of state is
spanning continuous behavioural spaces over different perceptual and mo-
tor dimensions. Continuous dynamic neural fields are defined over these
dimensions that stabilise different attractor states corresponding to the per-
ceived states, decisions, and planned actions. These dynamics can account
for working memory and stabilisation of decisions among alternative states
(Schoener, 2008), which are routed in theoretical understanding of large-
scale neuronal processes (Wilson and Cowan, 1973; Grossberg, 1988; Er-
mentrout, Galan, and Urban, 2008). This dynamic neural fields approach
(Schoener, 2008; Sandamirskaya et al., 2013; Sandamirskaya, 2013a) has
been used both to account for visual cognition of humans (Johnson, Spencer,
and Schoener, 2008) and to control cognitive robots (Richter, Sandamirskaya,
and Schoner, 2012).

Inspired by the dynamic neural fields approach, the 256 neurons of the
neuromorphic device were reconfigured to account for different groups of
neurons which excite one group and inhibit another. The detailed network
will be explained in chapter 4. This cognitive model can explain how hu-
mans learn sequences such as phone numbers and car plates, and maintain
them in the short-term memory (Henson, 1998). Every number or letter has
a position in space and activates its own memory with a certain memory
strength. If the strength of the memory is too small the recall is likely to fail.
In this model, ordinal groups of neurons represent action fields, which can
be used to carry out an action according to a learned element or simply recall
it. Ordinal and memory groups are highly self-excitable and therefore only
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stop firing when they are inhibited by an external stimulus. When an ordi-
nal group is suppressed, its active memory excites the next ordinal group,
leading to a sequence of events. At the same time another large group of
neurons can be used to represent content. This content can be learned by
the ordinal neurons. Associations between content and ordinal/action neu-
rons are learned by an STDP learning rule. The learning dynamics of the
neuromorphic device are in accordance with Hebb’s postulate: "Cells that
fire together, wire together" (Hebb, 1949). Hence, when content neurons
fire at the same time as ordinal neurons, the synapses from ordinal neurons
to the content neurons will potentiate and an association is being learned.
During recall, the ordinal neurons will automatically activate the associated
content.

1.2 Thesis Outline

This report is structured as follows. After the introduction of the first sec-
tion, the second section describes the architecture of the ROLLS neuromor-
phic processor and gives a short description of the silicon neuron and synapse
circuits that are being used. The spike-based learning mechanism will be
introduced and the plasticity of the network and how it constructs the clas-
sification of different input patterns will be explained. In the second section
it will be described how the neuromorphic processor can be used to carry
out an unsupervised learning task. The applied methods that lead to the
networks ability of performing this task will be introduced. These meth-
ods include the winner-take-all configuration, the specification of input pat-
terns, the initialisation of the network as well as how to read out the learned
classes from the network. Learning dynamics and classification results will
be shown. The fourth chapter introduces the sequence learning task. The
conceptual model will be described, different network architectures on chip
as well as the final hardware implementation will be explained. Finally the
results of learning and forgetting sequences will be shown. After consider-
ing serial order errors occurring on the hardware and how these are related
to human behaviour, a conclusion of the neuromorphic learnig abilities will
be given. The appendix includes the circuits of the ROLLS chip as well as
the biases needed to perform the proposed tasks.

Yulia Sandamirskaya
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Chapter 2

Architecture and Learning
Abilities of the Neuromorphic
Processor

2.1 Reconfigurable On-line Learning Spiking Neu-
romorphic Processor

A compact, low-power, artificial neural processing systems having real-time
on-line learning abilities, was used in this project to carry out an unsuper-
vised pattern recognition as well as a sequence learning task. The recon-
figurable on-line learning Spiking Neuromorphic Processor (ROLLS) de-
signed by Ning Qiao (Qiao et al., 2015) is a full-custom mixed signal VLSI
device which comprises neuromorphic learning circuits that can emulate
the biophysics of real spiking neurons and dynamic synapses in real-time.
This chip comprises 128K synapse circuits and 256 neuron circuits, realised
with analogue electronics. These comprise biologically plausible dynamics
and bi-stable spike-based plasticity mechanisms necessary for their on-line
learning abilities.

The 256 neuron circuits can be reconfigured, thus allowing us to build brain-
inspired neural network connectivities. With the right circuit biases the neu-
ral networks are able to carry out short-term as well as long-term plasticity
mechanisms. In this thesis it will be shown that in the right configuration
and with the right set of biases, this device is able to reliably perform un-
supervised learning tasks in real-time. Fig. 2.1 shows a micro-photograph
of the global architecture of the ROLLS neuromorphic processor. Two dis-
tinct synapse arrays can be recognised. One array of 256x256 programmable
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FIGURE 2.1: Micro-photograph of the ROLLS neuromorphic
processor (Qiao et al., 2015).

synapses with short-term plasticity (STP) circuits on the left, and one array
of 256x256 plastic synapse circuits for modelling long-term plasticity (LTP)
mechanisms on the right.

The device also comprises a 256x2 row of linear integrator filters denoted
as “virtual synapses”. These can be used to direct external inputs to the
neurons. Stimulation of a single virtual synapse has a similar effect as stim-
ulating the target neuron with multiple independent inputs and is therefore
an efficient tool that can be used to directly obtain postsynaptic spikes on
a desired output frequency. The silicon neurons can be recurrently con-
nected through a programmable logic state of a synaptic matrix. The block-
diagram of the chip architecture is shown in Fig. 2.2.
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FIGURE 2.2: Block diagram of the ROLLS chip architecture.

Peripheral analog/digital input-output circuits for both receiving and trans-
mitting spikes in real-time off-chip follow an AER (address-event represen-
tation) protocol and can be used to stimulate individual synapses or neurons
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on the chip. An on-chip programmable bias generator, optimized for sub-
threhold circuits (Delbruck et al., 2010) allows the user to program the prop-
erties of the synapses and neurons (such as time constants, pulse widths,
etc.), creating networks with different properties and topologies.

The ROLLS was fabricated using a standard 180 nm CMOS 1P6M process. It
occupies an areas of 51.4 mm2 with approximately 12.2 million transistors.

The neural network architecture and the parameters of the neuromorphic
core are defined and communicated to the processor via a high-level Python
framework, called PyNCS (Stefanini et al., 2014). All silicon synapses pro-
cess input spikes in real-time as they arrive and silicon neurons transmit
the spikes they produce as they are generated. Hence, input data is pro-
cessed instantaneously and the circuits are operating with time-constants
well-matched to behaving systems that interact with the environment in
real-world scenarios. The synapse circuits of the processor are able to con-
vert input spikes into output currents which have non-linear dynamics, due
to adaptation and learning features.

2.2 Spike-Based Learning Algorithm

An important property of biological synapses is their ability to exhibit dif-
ferent forms of plasticity. Plasticity mechanisms produce long-term changes
in the synaptic strength of individual synapses. Different strengths of synapses
can help to form memories and to learn features of input stimuli. The
mechanism leading to an increase of synaptic strength is denoted as long-
term potentiation whereas the mechanism leading to a decrease of synaptic
strength is denoted as long-term depression. In the proposed neuromor-
phic processor, the silicon synapses can model these plasticity mechanisms
with a Spike-Time Dependent Plasticity (STDP) rule which has been widely
spread in computational neuroscience literature (Abbott and Nelson, 2000).
In STDP mechanisms, synaptic weight values are updated based on the tim-
ing of presynaptic and postsynaptic spikes. However, STDP rules alone
have poor memory retention performance (Billings and Rossum, 2009) and
require local mechanisms to learn both spike-time correlations and mean
firing rates of input patterns. (Senn, 2002) That is why the ROLLS processor
implements a spike-driven synaptic plasticity rule proposed by Brader et
al. (Brader, Senn, and Fusi, 2007). This rule has been shown to reproduce
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many of the neural dynamics observed in biology because it does not rely
on spike-timing alone but rather updates the synaptic weights according to
the timing of the pre-synaptic spike, the state of the post-synaptic neuron’s
membrane potential, and its recent spiking activity. On long time-scales
the weights are bi-stable, meaning that they converge to a bounded high or
low state. The learning rule comprises a stochastic weight update mecha-
nism avoiding that all synapses get updated in exactly the same way. This
stochasticity can be obtained by simply exploiting the variability in the in-
put spike trains of a Poisson process, and the variability in the post-synaptic
neuron’s membrane potential. The weight-update is evaluated upon the ar-
rival of each pre-synaptic spike and is given for a synapse i by the following
equations:

w

i

= w

i

+� ⇤ w+
if V

mem

(t
pre

) > ✓

mem

and ✓1 < Ca(t
pre

) < ✓3 (2.1)

w

i

= w

i

�� ⇤ w�
if V

mem

(t
pre

) > ✓

mem

and ✓1 < Ca(t
pre

) < ✓2 (2.2)

where w

i

represents an internal variable that encodes the bi-stable synaptic
weight. The terms w

+ and w

� determine the amplitude of the variables in-
crease and decrease respectively, following the update. V

mem

represents the
post-synaptic neuron’s membrane potential at the time of the pre-synaptic
spikes arrival. ✓

mem

is a threshold term that determines whether the neurons
membrane at time of the presynaptic spike is higher than this threshold, in
order to increase the weight or to decrease it otherwise. Ca is the term that
represents the neuron’s Calcium concentration, which is proportional to the
neuron’s recent spiking activity. ✓1, ✓2, and ✓3 are the thresholds that deter-
mine in which conditions the weights are allowed to be increased, decreased
or will not be updated. The stop-learning conditions are useful for normal-
ising the weights of all synapses afferent to the same neuron. It was shown
by (Senn and Fusi, 2005) that these conditions can extend the memory life-
time of recurrent spiking neural networks, as well as increase their capacity.
In addition to the weight update rule, the internal variable of the synapse
w

i

is constantly being driven toward one of the two stable states depending
on whether it is above or below a given threshold ✓

w

d

dt

w

i

= +C

drift

ifw
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> ✓

w
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FIGURE 2.3: These two figures show the dynamics of the
stochastic learning rule, with a LTP transition on the right. The
post-synaptic activity in the top figure is kept at 150 Hz (left)
and 250 Hz (right) via a teacher signal, while the pre-synaptic
activity presented in the third figure from the top is kept at
50 Hz. The second figure from the top show the changes in
calcium concentration in response to the post-synaptic activ-
ity, and the bottom figures show the changes in the internal

weight variable. Simulation from (Ling, 2015).

where C

drift

represents the rate at which the synapse is driven to its bounds
w

max

and w

min

. Finally, the binary weight of the synapse is a thresholded
version of the variable w

i

:

J

i

= J

max

f(w
i

, q

J

) (2.5)

where f(w
i

, q

J

) is a threshold function with threshold q

J

, and J

max

is the
maximum synaptic efficacy. Ning et al. showed that the ROLLS neuromor-
phic processor can faithfully implement this learning algorithm (Qiao et al.,
2015).

2.3 The Silicon Neuron Block

The neuron circuit integrated in the ROLLS chip was derived from the adap-
tive exponential I&F circuit proposed in Indiveri et al. (Indiveri et al., 2011).
It exhibits neural behaviours, such as spike-frequency adaptation, a refrac-
tory period mechanism and an adjustable spiking threshold mechanism.
The circuit schematics are shown in appendix A. The circuit models the
NMDA voltage gating function, the neuron’s leak conductance, the effect
of Sodium activation and inactivation channels for producing the spike, as
well as the effect of the Potassium conductance, resetting the neuron and
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implementing a refractory period mechanism. The neuron circuit equations
are nearly the same as the ones of the adaptive I&F neuron model, and the
repertoire of behaviors that it can reproduce were analysed by Brette and
Gerstner (Brette and Gerstner, 2005). The transistor biases are globally tune-
able parameters which can be set by the on chip Bias Generator (BG). There
are 13 tuneable parameters, making it possible to let the neuron produce
different kinds of behaviours. See appendix A for more information. The
neuron soma circuit and the post-synaptic plasticity circuits integrate the
spikes produced by the neuron into a current that models the neuron’s Cal-
cium concentration. This current is then being compared to three threshold
currents ✓1, ✓2, and ✓3 as shown in equation 2.1 and 2.2. At the same time,
the neuron’s membrane current is being compared to ✓

mem

. The outcome of
these comparisons sets the digital ’down’ (DN) and ’not up’ (NUP) signals,
which are buffered and transmitted in parallel to all synapses afferent to the
neuron’s long-term plasticity array.

2.4 The Long-Term Plasticity Synapse Array

Each of the 256x256 synapse circuits in the long-term plasticity array in-
cludes event-based programmable logic circuits for configuring plastic con-
nections of the network, as well as circuits that implement the previously
mentioned learning algorithm. The circuits are shown in the appendix A.
The bistable state of the synaptic weight can be set by sending an AER
event with the matching address and by asserting the configuration signals
set_high and set_low. The heights of the digital up and down signals that
arise after comparisons where made with the learning rule can be changed
in the bias generator. In addition, the up and down drift rate and the thresh-
old ✓

mem

, which determines the threshold of a weight transition can be set,
see equation 2.3 and 2.4. Therefore, it can be directly defined how fast a
synapse should learn to depress and to potentiate.

Fig. 2.4 and Fig. Fig.2.5 show experimental results that highlight the fea-
tures of both synapse and neuron learning circuits in action: weight up-
dates are triggered when the pre-synaptic spikes arrive, and when the post-
synaptic neuron’s Calcium concentration is in the appropriate range. De-
pending on the value of the Calcium concentration, the digital up and down
signal turn on or off. The weight’s internal variable is increased or decreased

Yulia Sandamirskaya
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FIGURE 2.4: Learning circuits in action. The yellow trace
shows the position of the weight. High meaning that its value
is w

max

, low meaning that its weight is w
min

. The red trace
shows the state of the calcium variable, which is active low. A
down decrease of the red trace means an increase in the post-
synaptic calcium concentration. The green trace is the digital
down signal, which is active high, and the blue trace is the
digital up signal which is active low. Here, a down transition
of the weight takes place. After the neuron fires, calcium in-
creases. Because calcium is below ✓2 only a down signal can
be initiated, leading to a weight transition from w

max

to w
min

.

FIGURE 2.5: An up transition of the weight is taking place. Af-
ter three postsynaptic spikes, the calcium post-synaptic con-
centration increases more and more. Because at the time of
a presynaptic spike, the membrane threshold is above ✓

mem

and the calcium concentration is high enough, two up signals
occur, leading to a weight transition from w

min

to w
max

.

depending on where the membrane potential is with respect to the mem-
brane threshold. This variable is actively driven to the low or high bounds,
according to wether it is below or above the weight threshold ✓

w

.

Fig. 2.6 shows the data taken from the oscilloscope during potentiation, here
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FIGURE 2.6: Time-plot of activity of a silicon neuron and plas-
tic synapse. The black trace shows the input events, the pink
trace the membrane potential and the light blue trace the cal-
cium concentration (being active low). As the calcium concen-
tration increases and the membrane potential is above ✓

mem

the weight increases, as shown as the dark blue trace.

together with the input events (black trace) and the membrane potential
(pink trace).

2.5 The Short-Term Plasticity Synapse Array

The circuits of the STP synapses allow the user to program the strength
of recurrent synaptic connections to one out of four possible weight val-
ues. In addition, in can be specified if a synaptic connection should be
excitatory or inhibitory. An excitatory synapse comprises circuits for mod-
elling Short-Term Depression (STD) dynamics (Rasche and Hahnloser, 2001;
Boegerhausen, Suter, and Liu, 2003) where the magnitude of the excitatory
post-synaptic potential (EPSP) decreases with every input spike, and recov-
ers slowly in absence of inputs. More details about the underlying silicon
neuron and synapse circuits can be found in the original paper of the ROLLS
chip (Qiao et al., 2015).
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2.6 Learning on the Network Level

In the previous section we have described the spike-based learning rule, as
well as the single building blocks implemented on the ROLLS chip. Each
neuron has three different activation modes. First, direct activation through
its virtual synapses. Second, recurrent activation through programmable
synapses, which is usually initiated by the firing of other neurons, that are
recurrently connected to the given neuron. And third, activation through
plastic synapses that have the ability of potentiation and depression. The
strength of the recurrent connections is fixed and can be set to one out of four
different weights. Configuring the recurrent connections of the neurons,
their synaptic strength, and setting the neurons to be either excitatory or
inhibitory lets us create different types of neural networks. These neural
networks can have different abilities. As an example, it was shown that
groups of neurons can create, modify and preserve memories (Technology
and Tianlu, 2015).

Learning protocols can guide the synaptic modification by making the post-
synaptic neuron respond differently to different kinds of input patterns. In
an unsupervised learning setting, input patterns are analysed and classified
on their statistical structure. The neural network is able to discover new and
hidden structure without requiring previous training. Unsupervised learn-
ing is an interesting topic in the machine learning community and many re-
liable algorithms, such as clustering, principal component analysis (PCA),
estimation maximisation and others have been developed to simulate unsu-
pervised learning.

However, these algorithms utilise digital logic, fast and precise, but very
power-consuming. Neuromorphic circuits that recreate the biophysics and
network architectures behind biological neural processes show a better per-
formance in the presence of noise, they are more power-efficient and op-
erate in real-time. Inspired by the recurrent organisation of the neurons in
the cerebral cortex, where the interaction between excitatory and inhibitory
neurons ensure a well-balanced overall system (Zhang and Sun, 2011), we
use the connectivity scheme of a soft winner-take-all (WTA) for an unsuper-
vised learning task. The computation of a soft max due to the cooperative-
competitive behaviour of soft WTA implementations is compatible with ev-
idence from neuroscience. An example is the cooperative feature resolution
that is processed by dendrites of the superficial pyramidal neurons in layer
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2/3, as well as the output selection mechanism to motor structure that is
carried out by pyramidal neurons in layer 5 (Douglas and Martin, 2007).
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Chapter 3

Unsupervised Learning on
neuromorphic hardware

3.1 Winner-Take-All Network

A nonlinear computational principle that is able to compute decision mak-
ing was shown to exist in prefrontal cortex (Wang, 2012) and it is referred
to as the winner-take-all network (WTA). In this framework neurons com-
pete with each other for activation. In a hard WTA, only one neuron stays
active, while all others are being suppressed and finally shut off. This be-
haviour emerges from the excitatory and inhibitory connections between
the neurons. In a WTA network, neurons have excitatory connections with
their nearest neighbours, therefore locally enhancing each others activity. At
the same time, a single or a small group of inhibitory neurons exists which
globally inhibit all excitatory neurons at the same time. This inhibitory
population only gets its excitatory input from the excitatory neurons and
is therefore only activated when the excitatory neurons are active as well.
The strength of the global inhibition can be set in a way to be left with only
one ’winning neuron’, i.e. in a hard WTA setting, or with a group of win-
ning neurons, i.e. in a soft WTA setting. This type of computation has been
proposed in hierarchical models of vision (Riesenhuber and Poggio, 1999a),
and models of selective attention and recognition (Carpenter and Gross-
berg, 1987).
Fig. 3.1 shows how a constant input to the neurons is converted to a Gaus-
sian output curve. Some silicon neurons of the ROLLS chip are more ex-
citable than others, due to mismatch. Hence, in a WTA configuration the
neurons that fire the most amplify their neighbours, while weaker neurons
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FIGURE 3.1: A constant step input is being converted to a
Gaussian output by the recurrent connections of neurons in
a WTA configuration and because of the neurons mismatch.
The left side shows how the step input is converted to a Gaus-
sian output when it is fed to recurrently connected neurons.
The right shows the excitatory and inhibitory connections un-

derlying the WTA configuration.

get further suppressed. At the right of the figure one can see the recurrent
connections, that establish this kind of behaviour.

In this project a WTA implementation is used for an unsupervised learn-
ing task of pattern recognition. A soft WTA implementation which enables
VLSI systems to selectively enhance the contrast between inputs (Chicca
et al., 2014) helps the network to autonomously find a hidden structure in
the different input patterns. Excitatory neurons were connected via excita-
tory recurrent connections to themselves resulting in self-excitation, and to
their three nearest neighbors. At the same time there is an excitatory all-
to-one connection from the excitatory neurons to the one inhibitory neuron,
which globally inhibits all the excitatory neurons. With setting the biases
of the synapse circuits one can specify the amount of inhibition, resulting
in the sustained activity of a desired number of neurons. Fig.3.2 shows a
schematic of the recurrently connected neurons.

Fig.3.3 shows a raster plot of the postsynaptic spikes of 63 neurons config-
ured in a WTA network where 20 neurons receive a gaussian input with
maximum 110Hz and other 20 neurons receive a gaussian input with max-
imum 10Hz. As soon as neuons start to fire the inhibitory neuron is active,
suppressing the activity of all neurons. Despite the great inhibition from the
inhibitory neuron, some neurons that receive a higher input frequency man-
age to stay active until the input is gone. The neurons that receive lower in-
put frequencies are suppressed immediately and do not manage to become
active. Mismatch and high excitation of neighbouring neurons leads to a
small shift in the active group compared to the one that actually receives
the highest input.
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FIGURE 3.2: A schematic of the neuron’s recurrent connec-
tions on the device. Recurrent connections are shown by con-
nections of the neurons soma. The neuon whose soma is
coloured red represents the gloabl inhibitory neuron. The in-
put to the neuron is given as two Gaussian curves with dif-
ferent maxima (green curve). The global inhibition and local
excitation leads to an amplification of the the higher input and
a suppression of the lower input. The resulting output is given

as the blue curve.

In this setting of unsupervised learning, it is desired that neurons modify
their weights according to different postsynaptic spiking frequencies that
were initiated by different input patterns. After the stimulus is gone, and
a weight update was performed, the neurons should stop firing, so that
a new input stimulus can be presented and the firing for the previous in-
put does not interfer with the firing for the next input pattern. The time
constant for the excitatory connections must be very high and the time con-
stant of inhibitory connections must be very low, so that excitation is slow
whereas inhibition is fast. Thus, the excitatory neurons can be quickly in-
hibited. This inhibition results in suppressed activity which in turn leads
to a smaller excitation of the inhibitory neuron. Finally, the inhibitory neu-
ron does no longer receive input and is shut off. A new input pattern can
be presented. The time of the stimulation as well as the strength of inhibi-
tion should be just enough to learn LTP and LTD at the winning neurons.
A too long stimulation will result in the forgetting of previously learned
patterns because neurons will quickly synchronise their postsynaptic firing
frequency due to the recurrent connections. More and more neurons will
learn the same input, and the increasing postsynaptic firing rate will lead to

Yulia Sandamirskaya


Yulia Sandamirskaya


Yulia Sandamirskaya
only WTA was discussed so far, the switch to unsupervised learning is a bit to abrupt…

Yulia Sandamirskaya
Tome constants were not presented so far… May be discuss the equations for the neuron and the synapse at some point…



Chapter 3. Unsupervised Learning on neuromorphic hardware 18

(A) Input spiketrain consisting
of two gaussian bumps used to
stimulate 63 neurons in an WTA
configuration. The stronger
gaussian bump (centered around
neuron 15) has a maximum fre-
quency of 110Hz whereas the
weaker one (centered around
neuron 45) has a maximum fre-
quency of 10Hz. 5% of plas-
tic synapses are initialized to be
randomly potentiated. Input is
given to all 256 plastic synapses

of each neuron.

(B) Raster plot of the resulting
postsynaptic spikes. The 10Hz
gaussian bump is clearly sup-
pressed, i.e. the neurons receiv-
ing 10Hz remain silent, while the
neurons receiving 110Hz stay ac-
tive until the end of stimulating.
The inhibitory neuron (number
63) is active as soon as an excita-

tory neuron is firing.

FIGURE 3.3: WTA behaviour on the ROLLS chip

potentiation on all synapses. Instead, only a few synapses should potenti-
ate, in order to account for high and low frequencies of the input. The high
inhibition results in sparse firing and not many neurons are able to perform
learning transitions. This sparse firing is needed, in order to be able to learn
many different patterns. The firing of too many neurons would also result
in all of them learning the first pattern, leaving only a few neurons that can
potentially learn the next pattern. The solution to arrive at local groups of
neurons, that encode the same pattern is to present the different input pat-
terns over many trials. The potentiated weights of the previously winning
neurons lead to increased activity so that also the activity of their neighbors
is being increased. Thus a broader group of neurons fires for a specific input.
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3.2 Network Configuration on Chip

In this project 252 silicon neurons were used to implement four WTA net-
works. Four WTA’s were chosen in order to examine robustness and dif-
ferences in the network behaviours due to mismatch in the underlying cir-
cuits. Each WTA comprises 62 excitatory neurons and a single global in-
hibitory neuron. Excitatory neurons are self-excitatory and have excitatory
connections to their three nearest neighbours, all of which are having the
same connection strength. The inhibitory neuron receives excitatory input
from all excitatory neurons and sends out the same amount of inhibition
to all excitatory neurons. These connections were made via programmable
synapses and stay fixed during learning.

FIGURE 3.4: Matrix of recurrent connections of all 256 neu-
rons. One WTA network consists of 63 neurons. The exci-
tatory neurons are connected to their three nearest neighbors
and to the global inhibitory neuron. The global inhibitory neu-
ron is connected to all excitatory neurons. Blue represents an

inhibitory connection whereas red means excitatory.

Fig.3.4 shows the recurrent connection matrix of the programmable synapses
and Fig.3.5 shows a clipping on how this connectivity is set on the ROLLS
chip. External frequency input patterns are used to stimulate the plastic
synapses, so that neurons can learn an association between input frequency
and the exact synapse which is stimulated by this frequency. To make fir-
ing activity possible, we initialised 5% of the plastic synapses to be ran-
domly potentiated. Thus, we only need a high gain of the plastic synapses,
but do not require to artificially initiate postsynaptic spikes on the neuron.
This random initialisation of weights is supported by biological models.
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FIGURE 3.5: Setting the WTA connectivity on the ROLLS chip.

Song et.al suggest that STDP, acting without hypothetical constraints on
randomly potentiated synapses, can reproduce the remapping observed in
adult cortex (Song and Abbott, 2001). This behaviour can also be seen in
the postsynaptic firing of our network. In the first trials, where every neu-
ron was stimulated through the plastic synapses with the same input, the
random weights lead to almost equally distributed firing rates across all the
neurons. However, mismatch in the underlying circuits makes some neu-
rons fire more than others, and the WTA connections further enhance the
difference of these firing rates. Thus the neurons with a high firing rate po-
tentiate, whereas the ones with a low firing rate depress. After many trials
structure emerges and we are left with only a few groups of neurons that
respond to a given input. In the section 3.4 it will be explained that also
the input frequency determines the probability of LTD and LTP transitions.
This is especially needed for pattern recognition tasks, where the patterns
are made of different input frequencies.

3.3 Pattern Classification Task

To demonstrate the mechanism and the performance of unsupervised learn-
ing on the ROLLS chip, a pattern classification task was applied. We differ-
entiate between two different input patterns. Input patterns are encoded as
sets of Poisson spike trains that stimulate the neuron’s plastic synapses with
different mean frequencies. The neuron’s postsynaptic firing rate represents
the classification of the input pattern.
The two input patterns are shown in Fig.3.6. All neurons are stimulated on
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FIGURE 3.6: The schematic of the recurrently connected exci-
tatory neurons receiving either input pattern 1 or input pattern

2 on their plastic synapses.

their plastic synapses with the same input pattern. The goal is that some
neurons learn to fire for a given input while other neurons learn to fire for
another input pattern depending on the input pattern with which the neu-
rons are stimulated. The neurons implicitly learn to encode different fea-
tures of the input, which the neurons can use later on, to infer about the
similarity of patterns. There can be 256 input features encoded by the 256
plastic synapses of each neuron. Similar to cortical neurons, every silicon
neuron on the chip is not exactly the same (Goris, Movshon, and Simon-
celli, 2014). This variability, which is mainly due to mismatch in the circuits,
makes the neurons fire in slightly different ranges although the input stimuli
are the same for each neuron. The recurrent connections that were used to
obtain the WTA behaviour enhance this variability, resulting in local groups
of neurons firing at a similar frequency range. The biases that implement
the learning rule were set in such a way that the synapses receiving 110 Hz
potentiate and the synapses receiving 10 Hz depress their weights when the
neuron is firing at a specified postsynaptic rate. The neurons that are below
a certain postsynaptic firing can not make a weight transition due to the
✓

min

threshold. If the postsynaptic firing of these neurons is so weak that
the calcium concentration does not exceed this threshold, a weight transi-
tion cannot take place. These neurons keep their initial random weights,
so that they can still respond to the next input pattern. After stimulating
the plastic synapses of all excitatory neurons for 150 ms with input pattern
one, input pattern two is used for stimulating, again all excitatory neurons
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for 150 ms. The neurons that learned input pattern one will not respond to
input pattern two because some of their synapses that previously received
10 Hz depressed. Others still have randomly potentiated weights at their
synapses, which are now receiving 110 Hz input. These might be the new
?winning? neurons. Thus, different winners are found for different input
patterns. After stimulating multiple times, neighbouring neurons encode
the same input pattern, resembling mapping structures, like retinotopy that
was found in the visual cortex (Engel, Glover, and Wandell, 1997).

3.4 Experimental Results

3.4.1 Synapse Dynamics and sensitivity to the parameters

The goal of the pattern classification task was, to show that neurons closely
connected in a neighbourhood learn to encode a specific pattern while an-
other group encodes another pattern without requiring a teacher signal. The
circuit parameters underlying the learning rule, the recurrent connectivity
and the soma are working together to achieve this behaviour. Different in-
put frequencies require different parameters for learning, since the input
directly influences the postsynaptic spiking frequency as well as the presy-
naptic spiking frequency. The biases where set in a way that LTP transitions
at the synapses are likely for a 110 Hz input rate if the postsynaptic spike
frequency was greater than 8 Hz and LTD transitions are likely if the input
frequency was 10 Hz and the postsynaptic rate was smaller than 30 Hz. The
goal was to maximise the LTD and LTP transitions for these input frequen-
cies, but they can certainly be changed if the networks has to learn different
values of input frequencies.
Fig.3.7 shows the average probability of potentiation and depression of each
neuron depending on its input and output frequency. To arrive at these
curves, the recurrent connections of the neurons were removed and all plas-
tic weights where set to w

min

. The input frequency to the plastic synapses
was swept from 10 Hz to 120 Hz in steps of 10 Hz, and for each of these
input frequencies the neurons were at the same time stimulated via virtual
synapses with frequencies that where swept from 200 Hz to 600 Hz in steps
of 100 Hz to obtain different postsynaptic spiking frequencies. For the mea-
surement of LTP, the postsynaptic frequency of each neuron was recorded.
Then it was counted how many of each neurons 256 synapses potentiated to
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FIGURE 3.7: The blue curves are two Gaussians fitted to the
probability measures to make LTD transitions due to a 110 Hz
and a 10 Hz input frequency respectively. The red curves are
two Gaussians fitted to the probability measures to make LTP
transitions due to a 110 Hz and a 10 Hz input frequency. These
probabilities depend on the postsynaptic firing rate of the neu-

ron.

obtain the potentiation probability. The same was done for the LTD learning
curves, with the only difference that the weights were initially set to w

max

and it was recorded how many of the 256 learning synapses of each neuron
depressed. The learning behaviour was achieved by finding the right biases
of the circuits. A description on how to find the optimal biases can be found
in appendix A.

In the learning curves from Fig.3.7 it becomes clear that there is only a very
small range for LTP to be more likely than LTD. Higher postsynaptic fre-
quencies are generally more likely to occur after many preceding presynap-
tic spikes, therefore higher postsynaptic frequencies together with a 110 Hz
input are more likely to lead to LTP than to LTD. Since the plastic synapses
are used for stimulation in the learning task many presynaptic spikes will
automatically lead to a higher postsynaptic frequency followed by LTP, and
a smaller presynaptic frequency will directly lead to a smaller postsynaptic
frequency, followed by LTD.

The small range where LTP is more likely than LTD is due to the high inhibi-
tion in the WTA network. The inhibition has to be high in order to only find
a few winning neurons were learning is allowed to take place. In addition,
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the same neuron has to perform LTD and LTP transitions for the same post-
synaptic frequency, only by differentiating the input to the plastic synapses.
This only happens in a very small postsynaptic range since the postsynap-
tic firing rates are normalised by the WTA network and also because every
neuron receives the same input. However, the inhibition and the WTA be-
haviour help to filter out exactly these few neurons spiking in the optimal
range to underly both LTP for high input frequencies and LTD for low input
frequencies. These transitions occur at a postsynaptic frequency around 10
Hz. The curves in Fig.3.7 show that at 10 Hz postsynaptic frequency, there
is a maximum for LTD transitions for 10 Hz input and a maximum for LTP
transition for 110 Hz input. The red LTP curves for 10 Hz and 110 Hz input
have minimal overlap. This is very import to avoid that neurons learn po-
tentiate for both input frequencies. 10 Hz input frequencies require a very
high output frequency to make LTP transitions. This is avoided in the WTA
network, because the global inhibition makes suppresses activity making
high output frequencies impossible.

LTP is generally less likely to occur for small input frequencies. Its maxi-
mum value for low input frequencies is just 0.3 whereas the maximum for
LTD under the condition of a high input frequency is about 0.9. These spe-
cific conditions that lead to LTP and LTD on different synapses but on the
same neuron limit the postsynaptic firing range that can be used. At the
same time, it is desired to make the WTA behavior as strong as possible to
obtain only a few winning neurons for a given input pattern. A strong WTA
has high inhibition, because high excitation directly increases the inhibition.
Therefore postsynaptic firing rates are low. The highly restricted postsynap-
tic frequency range is not a problem since it makes learning only depend on
the input frequency, the current state of the weight and its gain. The postsy-
naptic rate is normalised directly by these factors, it cannot become too high
because of the inhibition that is initiated by the overall activity of the neu-
rons. The high gain of the the potentiated weights will make neighbouring
neurons spike at a similar frequency, so that they are able to learn the same
input pattern.

3.4.2 Classification performance

In this section learning and classification of the two input patterns will be
evaluated on four different WTA networks.

Yulia Sandamirskaya
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FIGURE 3.8: The synaptic weight matrix after initialization.

Fig.3.8 shows the initial plastic synaptic weight matrix with 5% potentiated
synapses.

FIGURE 3.9: Maximal achievable WTA behaviour due to mis-
match. Spiking for input pattern one is shown in blue, spiking

for input pattern two is shown in red.

Fig.3.9 shows the postsynaptic spikes after presenting input pattern one
(blue) and after presenting input pattern two (red). In this scenario some
neurons are clearly more excitable due to mismatch. They excite their neigh-
bors until the excitation to the inhibitory neuron is so strong that all activ-
ity is being switched off. Inhibition is almost immediate. Since the input
pattern is used to stimulate for 150ms firing activity occurs again after the
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inhibition has decreased to zero. Only the first impulse of activity is shown
here.

FIGURE 3.10: Synaptic weight matrix after two trials, i.e. stim-
ulating one time with input pattern one followed by input pat-

tern two, each for 150ms.

Fig.3.10 shows the synaptic weight matrix after these two trials, i.e. stimu-
lating one time with input pattern one followed by input pattern 2, each for
150ms.

Fig.3.11a shows the synaptic weight matrix after fourteen learning trials.
Whereas after only one stimulation with input pattern one and two, the
weights are mostly potentiated for the first pattern, the network finds an
equilibrium to equally potentiate synapses for pattern one and for pattern
two. The high gain of plastic synapses leads to the activation of more neigh-
bouring neurons and so to the emergence of clusters. However, after ap-
proximately fourteen trials training should be stopped since more neigbors
are being activated and thus potentiated. This leads to the fact, that the
latest pattern potentiates more and more neurons, leaving no capacity to
learn another pattern. Fig.3.11a also shows that the high mismatch of neu-
rons leading to different activity also leads to different learning behaviour.
While the WTA shown in green perfectly learns to differentiate between
two patterns, the other three WTA’s are much less active and therefore are
much slower in learning the two patterns. Slightly modified biases, which
make the excitability of the neurons higher lead to the weight matrix shown

Yulia Sandamirskaya
a comment on what we see here is needed….



Chapter 3. Unsupervised Learning on neuromorphic hardware 27

(A) Synaptic weight matrix after four-
teen trials.

(B) Synaptic weight matrix after four-
teen trials with a slightly modified set
of biases, making the neurons more

excitable.

FIGURE 3.11: Synaptic weight matrix after fourteen trials with
different sets of biases.

in Fig.3.11b. The WTAs show a more similar behaviour, there are approx-
imately two clusters for each WTA that correspond to input pattern 1 and
two clusters that correspond to input pattern 2.

There is a tradeoff between optimal WTA behaviour and the number of
learned input patterns. In the optimal WTA, clusters of neurons learn to
potentiate for one input immediately. It turns out that these neurons are the
most excitable neurons of the circuit. Hence, the next input has much less
neurons available for learning and these are also less excitable. To obtain an
equal number of neurons to learn the different patterns, the cluster sizes be-
come smaller and firing rates in the testing phase become weaker. Another
important feature of the learning is that broader groups of neurons should
potentiate over time, after presenting the input patterns many times. This
leads to a stable solution of learned inputs and amounts to an equal number
of neurons learning each pattern. This behaviour is obtained by changing
the parameters responsible for the weight gain. Potentiated weights lead
to an increased firing of the neuron when the input frequency to the po-
tentiated weights is high. This in turn leads to an increased firing of the
neighbors, due to the WTA configuration, which again leads to learning in
these neighbouring neurons.

To test if the neurons, which learned a given input pattern, fire only for
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FIGURE 3.12: Raster plot of the output spikes after stimulating
with input pattern one (blue) and input pattern two (red) for
1000ms in the testing phase. Only the first impulse of activity
is shown. Each pattern was shown 13 times for 150ms during
learning. The inhibitory time constant is much smaller than

the excitatory time constant.

FIGURE 3.13: Histogram of the selectivity of the neurons:
number of neurons responding to input pattern one (left), in-
put pattern two (right), and to both input patterns (middle).

this exact pattern, ✓
min

was set to its maximum to stop the learning process.
In addition, the inhibition was decreased to allow higher output frequen-
cies, so to see a clearer difference between specialised and non-specialised
neurons. After learning the weight matrix shown in Fig. 3.11b and stimu-
lating the neurons with input pattern one and two, the resulting raster plot
is shown in Fig. 3.12.
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The learned weights were used to study the dynamics of the WTA using dif-
ferent time constants. Throughout the experiments, we chose the time con-
stant for inhibition to be much smaller than the time constant of excitation.
Evidence was found within superficial layers of neocortex (Rutishauser, Slo-
tine, and Douglas, 2012) where inhibitory time constants are usually smaller
due to smaller cell bodies of inhibitory neurons (McCormick et al., 1985;
Koch, Rapp, and Segev, 1996). Smaller inhibition is also used to arrive at
Fig. 3.12.

Fig. 3.13 shows a histogram of the selectivity of neurons. It was compared
which neurons are only active for input one, which ones are only active for
input two and which neuons became active for both input patterns. The
selectivity is improved when clusters become larger and better seperetable
in space for different input patterns. The achieved clustering behaviour is
comparable to state-of-the-art machine learning algorithms based on DB-
SCAN, where points that are closely packed together in space are clustered
together(Ester et al., 1996).

FIGURE 3.14: Firing activity during testing, after having
learned the weight matrix shown in Fig.3.11b, using fast exci-
tation and slow inhibition. Neurons quickly excite their neigh-
bors, and as soon as the slower, but very strong inhibition be-

comes active, it switches off all activity.

Another scenario is shown in Fig. 3.14. Here, excitation is much faster than
inhibition. Therefore, neurons have more time to excite their neighbors un-
til being switched off. The firing activity after learning the weight matrix of
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FIGURE 3.15: Histogram of the selectivity of the neurons, re-
sponding to input pattern one (left), input pattern two (right),

and to both input patterns (middle).

Fig. 3.11b is shown in Fig. 3.14. Fig. 3.15 shows the corresponding selectiv-
ity histogram. Using fast excitation and slow inhibition leads to more den-
sity in activity, winners for each pattern can be seen more clearly. However,
this also leads to more overlapping activity, meaning that many neurons fire
for the same pattern due to the longer time they have to excite neighbors
which do not belong to the learned pattern. This is another argument, why
excitation should not be faster than inhibition during the learning phase. In
fact, this would mean that the same winner would be found for every pat-
tern and different clusters would not slowly evolve over time, but rather the
same clusters would be found for both patterns after the first learning trials.

Similar time constants are not appropriate for this kind of learning. Making
excitation only slightly faster than inhibition leads to oscillatory behaviour.
If the inhibition strength is set to strong enough biases, activity can eventu-
ally be switched off. Only the most strongly activated neurons fire in the last
oscillation. This behaviour is shown in Fig. 3.16, where blue spikes corre-
spond to the activity after being stimulated with pattern one, and red spikes
correspond to the activity after being stimulated with input pattern two. Al-
though, most neurons again fire for both patterns, it can be recognized that
some groups fire more for one input pattern than for another.
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FIGURE 3.16: Activity after having learned the weight matrix
shown in Fig.3.11b and being stimulated with input pattern
one (blue) and input pattern two (red). The time constants
of excitation and inhibition are only slightly different and the
stimulus onset is slightly shifted. Input pattern two starts 300

ms later than input pattern one.

3.4.3 Learning four different patterns

In the following it will be shown that each WTA comprising 63 neurons,
is able to learn to differentiate between more than two different patterns
in an unsupervised manner. Patterns consist of high and low frequencies
given to different synapses. Here we used again frequencies of 10 Hz and
110 Hz. Each neuron has 256 learning synapses, meaning that there are in-
finitely many possible patterns that could be learned. However, the number
of neurons is limited and mismatch leads to a variability in learning and fir-
ing activity, which worsens the performance. However, we can show that a
WTA comprising only 63 neurons can at least learn to differentiate between
four different input patterns. The four different input patterns are shown
in Fig. 3.17. The learned synaptic weight matrices after alternately stimu-
lating for 200ms with each pattern for five times is shown in Fig. 3.18 on
the left. After stimulating with each pattern for ten times, the weight matrix
changed as shown on the right of Fig. 3.18. Next, the biases of the circuit
where slightly modified to stop the learning process and to enhance the ex-
citability. The same input patterns where used for stimulating the neurons
for 1000ms.

Fig.3.19 shows histograms of the neurons selectivity to four input patterns.
Mismatch leads to the fact that highly excitable neurons are active for all
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FIGURE 3.17: The four different inputs used for stimulating
the learning synapses. The step signal is given to one fourth
of learning synapses. It is a 200 ms Poisson spike train with
a frequency of 110 Hz, the other synapses are stimulated with

Poisson spike trains of 10 Hz.

(A) Plastic weights after 4 different in-
put patterns were alternately used to
stimulate the synapses. Each pattern
was presented five times for 200 ms.

(B) Plastic weights after 4 different in-
put patterns were alternately used to
stimulate the synapses. Each pattern

was presented ten times for 200ms.

FIGURE 3.18: Weight matrix of the plastic synapses after learn-
ing 4 different input patterns.
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(A) Number of neurons that fire for
each combination of input patterns.

(B) Number of neurons that show per-
fect selectivity to only one input pat-

tern.

FIGURE 3.19: Histograms on the selectivity after learning four
different input patterns.

patterns. However, Fig.3.19b shows that there are a few neurons selective
only for one pattern.

3.4.4 Discussion

In this chapter we have shown that the the silicon neurons of the ROLLS
chip can be configured in a WTA network helping the neurons to find a
hidden structure in input patterns. Dynamics were discussed on the single
neuron, learning and network level and they were optimised by setting the
transistor biases of the circuits in order to solve an unsupervised pattern
recognition task. With this knowledge questions arise to what extend the
network is able to code for similarity. Similar spiking activity of different
groups of neurons is initiated when stimulated with similar patterns. Fur-
ther experiments will lead to clarity to what extend this similarity coding
can be used. In addition, the ROLLS chip can be used for pattern classi-
fication on datasets where white pixels are coded as high frequencies and
black pixels as low frequencies. Common datasets can be used to evalu-
ate the accuracy. Furthermore, larger WTA networks can be used in order
to learn more different patterns as the dataset sizes or the data complexity
increases. Another outlook of this work is to build hierarchies. Different

Yulia Sandamirskaya
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WTA networks that learn different features can be coupled so that eventu-
ally neurons in high-level hierarchies become able to learn more complex
features, just like it is the case in the visual system (Van Essen, Anderson,
and Felleman, 1992).

In comparison to common machine learning clustering algorithms like k-
means or DBSAN, this model does not require previous knowledge of the
data, such as the number of clusters or the epsilon radius and the minimum
number of points required to form a dense region, like in DBSCAN (Ester
et al., 1996). Clusters are learned via an unsupervised STDP learning rule by
spiking neurons in a WTA configuration. Another interesting property that
arises from our model is that one pattern is learned by more than one cluster
of neurons. This overdetermined feature leads to robust recognition, even
if one group of neuons fail, the pattern will still be recognized by another
group. The more patterns are being learned, the less clusters are available
for learning each pattern. Thus, the pattern classification becomes vulnera-
ble for many patterns. In order to perform unsupervised pattern classifica-
tion for many patterns, more silicon neurons are needed. As the technology
of building neuromorphic devices progresses, it might soon be possible to
perform robust and reliable unsupervised machine learning tasks directly
on hardware. This would contribute to a fast and low-power solution, be-
ing able to perform complex machine learning tasks.

Looking at each single WTA it can be seen that the learning behaviour be-
tween the WTA’s is quite different. This is a result of the random initial
weights as well as of the mismatch of the transistors in silicon synapses and
in the silicon neuron. However, in this unsupervised learning mechanism
we make use of the slightly different properties of the circuits. Instead of
obtaining precise behaviour of each building block, we use the neural net-
work as a whole to arrive at a reliable and robust result. In addition, the
network is robust in the sense that the failing of one building block will not
have any influence on its overall learning capability.

Yulia Sandamirskaya
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Chapter 4

Sequence Learning

4.1 Conceptual model

A neural-dynamic architecture for serial order working and long-term mem-
ory was used to implement sequence learning on the ROLLS chip. It is based
on dynamical neural field theory (Sandamirskaya and Schoener, 2010; Du-
ran and Sandamirskaya, 2012) and its architecture is shown in Fig. 4.1.

Ordinal nodes

Memory nodes

Adaptive projections

CoS node

Content DNF

Sensory-motor systemAction systemCoS

(A) Continuous version of the serial
order architecture.

Ordinal populations

Memory populations

Plastic synapses

CoS 
population

Content population

Content population,
inhibition

Sensory-motor systemAction systemCoS

(B) Realisation of the serial order ar-
chitecture with populations of spiking

neurons.

FIGURE 4.1: The serial order architecture, introduced in San-
damirskaya and Schoener, 2010.

Groups of ordinal neurons represent position in a sequence. They have all-
to-all synaptic connections to content neurons in a dynamical neural field.
These content neurons represent the perceptual state or action that has to be
stored in the given location (modeled as ordinal groups). The content DNF
is connected to the action system of the agent and sets attractors to generate
behavior. The synaptic weights are initially set to zero but the synapses of
active ordinal neurons to active content neurons will potentiate when these

Yulia Sandamirskaya
a small reminder on why it is interesting to implement this model would be good, the start is too abrupt otherwise…
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neurons are active at the same time. The start of a sequence is triggered
by external excitatory input to the first ordinal group. At the same time
an external excitatory signal is given to some content neurons. The content
neurons are in a WTA configuration so that only a group of neurons stays
active while input noise will not lead to the firing of neurons. The ordi-
nal groups are in a WTA configuration as well, to make sure that only one
ordinal group learns one teacher signal at a time. The ordinal group then
activates its memory group via excitable connections. Memory groups are
firing independently of each other and they remain active for the whole cy-
cle due to their high self-excitation. This memory constantly remembers that
its element has already been active. At the same time each active memory
group slightly inhibits its element, to make sure that the excitation from the
most recent memory to the next item is stronger than the excitation from a
very previous memory which already activated an item. A condition of sat-
isfaction system detects when each action or perceptual state has reached
the intended outcome (encoded in the coupling between the action and the
CoS system, (Richter, Sandamirskaya, and Schoner, 2012)). Then the CoS
node triggers a sequential transition by inhibiting the ordinal nodes.

The position of the content neurons can be used for encoding. For each
active ordinal group, some content neurons will be stimulated in order to
learn an association. After the complete learning phase, an external input is
send to an inhibitory group of neurons to switch off all activity. The recall is
then being triggered by an excitatory stimulation of the first ordinal group.
This model is inspired by neuronal finding about serial order encoding in
the cortex (Carpenter, Georgopoulos, and Pellizzer, 1999; Beiser and Houk,
1998) and behvaioral findings on serial order errors (Henson, 1998).

Fig. 4.2 shows how the serial order architecture can be implemented on the
ROLLS chip. Fig. 4.2a shows the architecture for a sequence where three ele-
ments are learned and Fig. 4.2b where a sequence of five elements is learned.
In the figures, a group of 100 (or 70) neurons in the upper right corner forms
the content DNF which is implemented by a WTA network as described in
section 3.1.

4.1.1 Dynamic Neural Fields

In this work, we use the conceptual and mathematical framework of Dy-
namic Neural Fields to realise a cognitive architecture on neuromorphic
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with five elements.

FIGURE 4.2: Connectivity matrix, sent to the ROLLS chip to
encode the serial order architecture

hardware. The analytical studies were carried out by Yulia Sandamirsakya
(Sandamirskaya, 2013b). In a Dynamic Neural Field (DNF) a continuous
activation function following the dynamical system equations, accounts for
the activation of a neuronal population, Eq. (4.1):

⌧ u̇(x, t) = �u(x, t) + h

+

Z
f

�
u(x0

, t)
�
!(x, x0)dx0 + S(x, t).

(4.1)

Where u(x, t) is the activation function at time t of a DNF. The parameter
space x describes the state of the system and �h is a negative resting level,
setting values of u(x, t) to be below zero. This can be regarded as an out-
put threshold that keeps noise from initiating activation when no external
input is provided. S(x, t) is the external input and f(u) is a sigmoidal non-
linearity, Eq. (4.2) transforms the output of the DNF to be a sigmoidal. The
output is zero for negative values of u(x, t), positive for positive u(x, t) and
saturating for large values of u(x, t):

f

�
u(x, t)

�
= (1 + e

��u(x,t))�1
. (4.2)

!(x, x0) is the interaction kernel that determines connectivity between posi-
tions x and x

0 on the DNF. Typically, the interaction kernel has a “Mexican
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hat” shape with a short-range excitation and a long-range inhibition imple-
menting a soft winner-take-all connectivity pattern, Eq. (4.3):

!(x, x0) = cexce
� (x�x

0)2

2�2
exc � cinhe

� (x�x

0)2

2�2
inh

. (4.3)

When the DNF receives a bi-modal input with two gaussian bumps, lateral
interactions lead to the strengthening of one and suppression of the other
input bump. The dynamics are the same as in the WTA network described
in section 3.1 and the output of the DNF, f(u(x, t)), is a single stabilised
activity peak.

These neuronal dynamics can be related to perceptual and motor parame-
ters measured in behavioral experiments with humans or animals.

It has been shown that DNF archtiectures can be used in robotic applications
(Richter, Sandamirskaya, and Schoner, 2012), such as tracking in a robotic
table-top scenario along with object recognition and object pose estimation
(Faubel and Schoner, 2009).

In the following it will be shown that a DNF architecture for serial order
(Sandamirskaya and Schoener, 2010) can be implemented on neuromorphic
hardware.

4.2 Different behaviour resulting from population
sizes, connectivity and WTAs

The proposed model for sequence learning can be realised by using different
types of winner-take-all configurations and by using discrete or continuos
groups of neurons. The different configurations have different advantages
and disadvantages which will be discussed here. The most robust config-
uration can be seen in Fig.4.2. Here the WTA network of the content neu-
rons (as described in section 3.1), is different from the one of the ordinal
neurons. The WTA of the ordinal neurons uses excitation among neigh-
bouring neurons and inhibition among distant neurons. In this way, dif-
ferent weights of excitation and inhibition can be used in the two different
WTA’s to obtain different firing behaviour, i.e. content neurons stop fir-
ing immediately when not stimulated, whereas ordinal groups keep firing
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until they are suppressed by an external inhibitory signal. Studies in neuro-
science found evidence for WTA’s with global inhibition similar to the one
described in section 3.1 (Pouille et al., 2009). Taking inspiration from real
neural networks, a WTA with global inhibition is used to implement the
content DNF. However, using this type of WTA also for the ordinal groups
degrades the networks ability to learn sequences. This is because biases for
recurrent connections are limited, making it impossible to achieve different
firing behaviours in ordinal and in content groups while using the same
type of connectivity and the same biases. Another possible implementation
of the serial order architecture would be to use continuous neurons in the
ordinal neurons. Here not only time, which is coded in the content neurons,
but also space, which is coded in the ordinal neurons would be continuos.
This implementation was tested, but it has the disadvantage of spontaneous
switching to the next ordinal element as can be seen in Fig. 4.3. It is not pos-
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FIGURE 4.3: Activity of the neurons after stimulating the first
ordinal group together with the first content group using a
continuos WTA configuration with inhibitory population for

ordinal neurons.

sible for the ordinal neurons to have clearly defined groups that keep firing
until being suppressed by an external signal. This is again due to the fact
that the same set of biases cannot account for different behaviours, i.e. in
ordinal and content neurons. Automatic sequence learning would be possi-
ble by finding out the time that is needed to switch to the next element and
stimulating the content neurons accordingly. The spontaneous switching
cannot be avoided since there is no parameter space in which the inhibition
of the ordinal WTA is stronger than the inhibition from the active memory.
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(A) Plastic weight matrix for learning
a sequence with three elements after

initilization

(B) Plastic weight matrix for a se-
quence with five elements

FIGURE 4.4: Plastic weight matrix for learning a sequence
with three elements after initilization

A suitable parameter space can be found for the configuration in Fig. 4.2. A
main feature of this configuration is that memory neurons are highly self-
excitable to remain active, even without input from the ordinal neurons.
A memory group has all-to-all excitable connections, with the excitatory
weight set to a high value. However, the strength of this self-excitaiton is
not enough to account for sustained activity by itself. As a solution, poten-
tiated plastic synapses which have a high gain, can be used to enhance the
self-excitation of these memory neurons. These plastic self-connections can
be seen on the diagonals in the lower left corner in Fig. 4.4. At the same
time memory neurons slightly inhibit the ordinal neurons. The ordinal neu-
rons should be inhibited less by their memory than by their WTA configu-
ration to avoid spontaneous switching of ordinal groups. Hence, a weaker
inhibitory weight is used for the all-to-all inhibition from neurons in a mem-
ory group to neurons in an ordinal group, than the larger inhibitory weight
that is required for inhibition among ordinal groups. The strength of inhibi-
tion is shown by the shade of the blue colour in Fig.4.2., where darker blue
means stronger inhibition. Excitation between ordinal and memory groups
is set to the maximum weight, as well as the excitation and inhibition of the
content WTA with its global inhibitory group. To allow ordinal groups to
sustain activity until they are being externally depressed, plastic potentiated
weights are required. 10% to 30% of randomly plastic potentiated weights
are used, Fig. 4.4. The amount of self-excitation that is needed depends
on the characteristics and current state of the chip, such as humidity and
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temperature. To generalise the parameter setting to other chips, memory
groups have to be more active than ordinal groups to make sure that these
are not only firing due to the input from ordinal neurons. For all neurons
it is important that inhibition is immediate, to immediately suppress noise
and obtain WTA behaviour. Excitation on the other hand needs to be strong
but slow, so that it is carried out over time and activity can be sustained. To
implement this model on the ROLLS chip, we configured the connectivity
of neurons as shown in Fig.4.2.

4.3 Hardware realisation

In order to implement this model on the ROLLS chip, we configured the
connectivity of neurons as described in the previous section. The size of the
neurons groups varies depending on the length of the sequence. The mini-
mal population size is 10 neurons per group and the longest sequence that
can be learned consists of five elements. The length of the sequence is lim-
ited by the number of silicon neurons on the chip. A device with more neu-
rons would be able to robustly learn longer sequences. In this implementa-
tion, each ordinal group consists of 20 neurons, each memory group of 10
neurons and the number of content neurons varies from 70 to 100 neurons
depending on the length of the sequnece. For longer sequences the neurons
available to encode content is reduced in order to keep enough neurons for
a stable serial order architecture. 12 neurons are used for external inhibition
of ordinal neurons, accounting for the condition of satisfaction (CoS) signal.
This leads to activation of the next ordinal group, initiated by the excitable
connections from the active memory of the previous element to the next
ordinal group. Another 12 inhibitory neurons are used to switch off all ac-
tivity after learning or recall, so that the next trial can be started. This group
is used to reset the neurons. The external input signal for a sequence of 5
elements is shown in Fig.4.5. All the neurons belonging to the first ordinal
group are stimulated for 6000ms with 200Hz via virtual synapses. A signal
to the content neurons consists of a high Gaussian signal with the maximum
being 900Hz and a standard deviation of 5. All other neurons receive ran-
dom values between 0 and 10Hz. The content neurons are stimulated for
6000ms. The inhibitory signal suppressing the ordinal neurons comes into
action by stimulating a group of inhibitory neurons for 500ms with 1000 Hz.
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FIGURE 4.5: External input used for generating and recalling
a sequence consisting of five elements.

The output frequency should be low in order to make the system biologi-
cally plausible and because the bandwidth with the AER circuits of the chip
is limited. If this bandwidth is exceeded, then the server will drop events
and the spikes that you get at the output are only a subset of the ones that
are really there. Output frequencies from 10Hz to 70Hz were recorded in
this task.

4.4 Experimental Results: Learning and forgetting
sequences

4.4.1 Memorising and forgetting a simple sequence

Simple sequences consisting of three elements were successfully memorised
and recalled on neuromorphic hardware. The left part of Fig. 4.6a shows
the activity of neurons when the teacher signal ABC is presented. The right
part shows the activity after only the first ordinal group is being activated.
Hence, the activation of content neurons is carried out autonomously due
to learned connections from ordinal to content neurons. The WTA configu-
ration in the content neurons together with the mismatch of silicon neurons
leads to different firing rates, leading to different probabilities of potentia-
tion at the synapses. Therefore, the potentiated synapses for each element
as well as their activity during recall look slightly different. Fig. 4.6b shows
the matrix of plastic synapses after sequence ABC was being learned.
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Fig. 4.7a shows the activity of neurons during learning and recalling of
sequence CAB. Here, the content of A was presented for a 9000ms dur-
ing learning, whereas C and B where presented for 6000ms. The proposed
model can learn and recall items for different time windows. A switch in
the ordinal group, which leads to learning of a new item and turning on
the corresponding memory is only carried out when the activity of ordinal
neurons is being suppressed by an inhibitory signal coming from the CoS
group. Learning one item for a longer time than other items leads to more
potentiation between this item and its ordinal group. Hence, the item that
is learned longer is consolidated more in its representation in the ordinal
group. Fig. 4.7b shows the corresponding weight matrix, with A being
slightly more potentiated.
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Another ability of this model is the forgetting of previously learned se-
quences when learning a new sequence. When presented with a new teacher
sequence, the winner-take-all connectivity of the content neurons leads to
amplification of the activity that is due to the external teacher signal. At
the same time the inhibitory group globally inhibits the content neurons,
leading to suppressed activity. Since the activity of externally stimulated
neurons is greater than the activity of recalled neurons through plastic con-
nections, the recalled activity is largely reduced and eventually switched off
completely. The new sequence is being learned in the previously described
manner, while the old sequence will slowly be forgotten. The mechanism
of forgetting comes about by the STDP learning rule implemented on the
device. The activity of ordinal neurons represents presynaptic spiking and
these neurons potentiate their synapses to content neurons in case there is
a postsynaptic spike on the level of content neurons. On the other hand, if
presynaptic spikes occur without being followed by a postsynaptic spike,
the synaptic weight is being decreased and eventually gets depressed to its
initial minimal state. Fig. 4.8a shows the firing activity when sequence ACB
is being learned and recalled. Fig. 4.8b shows the corresponding weight ma-
trix after learning. After learning sequence ACB, another sequence, namely
BAC is presented to the content neurons, Fig. 4.8c. The synaptic weight
matrix after one trial is shown in Fig.4.8d. The activity plot shows that the
newly presented elements are slowly learned while the old elements are
still recalled, because forgetting takes more time than learning. Fig. 4.8e
shows the activity of the neurons after stimulating with BAC for four times.
The sequence BAC is recalled but traces of ACB still remain. Comparing
the weight matrices, one can see that the sequence BAC is much more po-
tentiated than ACB in the weight matrix, Fig. 4.8f. The weights of ACB
depressed for the neurons that were not active during learning and recall.
These two figures show that now BAC is consolidated much more in mem-
ory than is ACB. With the strength of the inhibitory group of the content
WTA one can regulate the speed of forgetting. The more the previously
learned signal is suppressed, the quicker it will be forgotten. The speed of
learning new sequences can be regulated by changing the values of the dif-
ferential pair integrator (DPI) circuit parameters of the virtual synapses. If
the external input is able to initiate more activity, more postsynaptic spikes
will follow the ’presynaptic spikes’ that occur in the ordinal neurons. Hence
more synapses will become potentiated.



Chapter 4. Sequence Learning 45

ne
ur

on
 nu

m
be

r /
gr

ou
p

DNF
ord.

m
em

.
CoS

C

II.

III.
II.

I.

A

time, s
0 20 8040 600

teaching replay

reset
inh.

B

I.
III.

250

(A) Neuron activity during learning sequence
ACB (left) and recall (right).
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(C) Activity when presenting sequence BAC
for the first time, followed by recall.
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(E) Activity when presenting sequence BAC
for the fourth time, followed by recall.
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FIGURE 4.8: Learning and forgetting a sequence

4.4.2 Learning longer sequences

In theory the model is able to learn sequences of different lengths and for
different sizes of neuron populations. A change in the population sizes
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leads to different behaviour of the groups. An increase in size for exam-
ple leads to increased activity, which could result in spontaneous switching
of states, whereas smaller populations, leading to less activity, result in a
failure to activate the next memory or the next ordinal group. Thus, the
biases of the silicon neuron and synapse circuits have to be tuned accord-
ingly to again obtain the correct behaviour. Another limiting factor is the
size of the neuromorphic device. With 256 neurons it is not possible to learn
sequences longer than 5 elements. Populations have to be large enough in
order to compensate the mismatch of single neurons so that the networks
behaviour remains robust. Sequences of five elements can be learned on the
ROLLS chip. The population size of the content neurons was decreased to
70 neurons, while all other populations sizes were not changed. Fig. 4.9a
shows the activity when a sequence EABDC is being learned (left) and re-
called (right). Fig. 4.9b shows the corresponding weight matrix after learn-
ing. It can be seen that some groups of neurons are much more excitable
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FIGURE 4.9: Learning sequence EABDC

than others due to the mismatch on the chip. Here, the third ordinal group
is clearly weaker than the other groups making it difficult to find the right
biases that lead to correct behaviour of the whole network, e.g. increasing
the recurrent excitation leads to stronger activity in this group but at the
same time the other groups become even stronger leading to spontaneous
switches between the groups. Although the resulting variability of how
strong an item is consolidated is not optimal, the same behaviour occurs in
humans when remembering a sequence. For a long sequence, some items
seem to be stronger in our memory than others. Another example of a se-
quence with five elements together with the learned weight matrix is shown
in Fig.4.10. Here ABDEC was learned. Again the activity of ordinal groups



Chapter 4. Sequence Learning 47

ne
ur

on
 nu

mb
er

 / 
gr

ou
p 

DNF
ord.

m
em

.
CoS

C

II.

III.
II.

I.

A

time, s
0 20 8040 600

teaching replay

reset
inh.

B  

I.

III.

100 120

D
E

IV.

V.

IV.
V.

(A) Neuron activity during learning (left) and
recall (right)

ne
ur

on
 n

um
be

r /
 ta

rg
et

 n
eu

ro
n

synapse number / source neuron0 255

255

B
A

I.II.III.IV.V.

C
D
E

(B) Weights after learning the se-
quence ABDEC

FIGURE 4.10: Learning sequence ABDEC

is different, which is not only due to mismatch but also due to the randomly
initialised 30% of potentiated synapses of ordinal neurons. However, the
chosen biases can cope with these slight changes and still result in the right
overall behaviour.

4.4.3 Learning repeating items

The model does not show any difficulties in learning repeating items as can
be seen in Fig.4.11. Learning in ordinal to content neurons is not influenced
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FIGURE 4.11: Learning sequence AAC

by previously learned items since there are no excitable or plastic connec-
tions in between ordinal groups. Therefore each ordinal group can learn its
content independently.
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4.4.4 Serial order errors

Common errors that are made by the serial order architecture are sponta-
neous switching of ordinal groups or a failure to switch. The first comes
about if excitatory recurrent connections are too strong or the excitation time
constant is too small, making excitation of the next state faster than the inhi-
bition. The inhibition that suppresses new activity due to WTA connectivity
has to be very strong to only allow switching if all the ordinal neurons ac-
tivity is externally suppressed. A failure to switch the ordinal group occurs
when the external inhibition is not strong and long enough to completely
switch off any activity of the previous ordinal group. It can also happen due
to mismatch, when the excitation to the previous ordinal group is stronger
than the excitation to the next ordinal group. When the slight inhibition
from memory groups to their ordinal groups is not strong enough, a previ-
ous ordinal group is being switched on again. However, the inhibition from
memory groups to their ordinal groups should not be too strong, because
high inhibition from memory to ordinal together with high excitation from
memory to the next ordinal will lead to spontaneous switching. Hence, the
network is very prone to changes in the strength and time constants of exci-
tation and inhibition. Failure to switch from the third to the fourth ordinal
group is shown in Fig. 4.12a. Here the network recalled the third element
twice instead of recalling the fourth one. Learning was still done correctly
since the failure to switch only occurred in the recall.

In the next example, the network failed to switch to the fourth ordinal group.
Thus, the third group was presented with three different teacher signals.
It is interesting to see that this ordinal group mergers together the differ-
ent teacher signals. This is because recall of the previous item occurs at
the same time as the presence of the next teacher signal. Since recall and
teacher activity is nearby in space, the WTAs excitability of neighbors leads
to merging of these signals instead of suppression. The recalled content is a
combination of all three teacher signals. The spiking activity together with
the plastic weight matrix is shown in Fig. 4.12b.

An example of spontaneous switching is shown in Fig. 4.12c. As soon as the
fourth ordinal group is activated, it activates its memory which in turn ex-
cites the fifth ordinal group. The excitation to the fifth ordinal group is much
stronger than the self-excitation from the fourth ordinal group leading to an
immediate switch. Therefore, the fifth ordinal group is being presented with
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two different teacher signals. It learns the first teacher signal, but after being
presented with the second one, it potentiates its synapses to this signal and
forgets the previous one. This can be seen in the recall. Only the last teacher
signal is being recalled by the fifth ordinal group.

A similar case is shown in Fig. 4.12d, with the difference that the sponta-
neous switch only occurs during recall. The content signals were learned
correctly, but the switch from the third ordinal group to the fifth leads to the
fact that the fourth content element is not being remembered. This is simi-
lar to common errors made by humans, who have learned a long sequence
but forget to recall a specific item, which is stored somewhere in the mid-
dle of the sequence (Henson, 1998). At the same time, this example shows,
that even when using the same set of biases and recurrent connections, the
chip shows high variability as different transitions occur during training
and during recall.

Errors of this model always involve neighbouring items. Either the next
element overwrites the previous one, if the ordinal groups do not manage
to switch, or some items are only quickly learned and partly overwritten by
the next item due to spontaneous switching. This leads to confusion during
recall, which one is the right element to recall. If the error only occurs during
recall, either a previous items is recalled again or an item is being left out
due to spontaneous switching. The errors are more likely to occur for longer
sequences and they mostly appear towards the end. This is in line with
common errors that humans make when learning a long sequence.

4.4.5 Discussion

This project showed that the serial order architecture can account for se-
quence learning which can be successfully implemented in neuromorphic
hardware. With this implementation, we can study different sequence learn-
ing algorithms and test different cognitive architectures by changing the re-
current connections or the learning rule. To arrive at an optimal solution
for this architecture, it was shown that a discrete representation of ordinal
groups performs much better than a continuos representation. In addition
it was discovered that potentiated plastic synapses are needed to maintain
activity. A current limitation of this implementation is that a change in the
population sizes leads to different behaviour of the neuron groups and the
biases of the circuits have to be retuned. As an example, larger groups of
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neurons lead to stronger self-excitation which could result in spontaneous
switching. Whereas smaller population sizes lead to less activity, which
could result in a failure to switch to the next state. Furthermore, the ROLLS
chips themselves are highly variable due to mismatch. Therefore the imple-
mentation of the same architecture on a different chip has to be followed
by a retuning of biases. In further studies, we aim on finding rules on how
the biases and plastic synapses for self-excitation have to be changed when
changing population sizes. Decreasing population sizes would make it pos-
sible to learn even longer sequences on the chip. However the length of the
sequence is also limited by the 256 neurons on the ROLLS chip and popu-
lations should not be decreased too much in order to be able to compensate
the mismatch of single neurons. Research is currently being done to fabri-
cate chips with more than 256 configurable neurons and these chips would
be able to learn sequences with much more than five elements.

In the future, different approaches that are inspired by biological neural sub-
strate can be used for implementation in order to find a model that best
represents the computation carried out by the brain and that at the same
time leads to fast, low-power and reliable computation on a neuromorphic
device.

The viability of a sequence learning model is usually examined by com-
paring the errors committed by the model with those made by humans
(Henson, 1998). Common mistakes observed in nature involve swapping
of neighboring elements but a single error in a sequence does not mean that
its following items cannot be recalled anymore, as it is claimed in chain-
ing theory (Wickelgren, 1965). Our sequence learning model commits more
errors as sequences get longer. These always involve neighboring items.
However a single error is not always be followed by errors to recall the next
items. Instead, after a single spontaneous switch or a failure to switch, the
network still has the ability to correctly recall the following items.
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FIGURE 4.12: Common learning and recalling errors.
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Chapter 5

Conclusion

In this work, we have shown the learning abilities that can be carried out
by neuromorphic hardware. More precisely, we have shown unsupervised
learning experiments on the ROLLS chip, which comprises 256 configurable
silicon neurons together with virtual, recurrent and plastic synapses. These
plastic synapses show learning abilities which have been previously studied
in a supervised learning task (Technology and Tianlu, 2015). In this project
it was shown that the ROLLS chip is not only successful in supervised learn-
ing, but also in unsupervised learning. The biases can be changed so that
they are able to initiate depression and potentiation depending on the input
frequencies at different synapses. Thus, different patterns of input frequen-
cies can initiate different postsynaptic firing of the neurons. A WTA config-
uration helps the network to find local clusters of neurons which learn one
specific pattern while other clusters learn another pattern. The WTA config-
uration achieves this by taking advantage of the neurons mismatch, which
leads to the fact that some neurons are more active than others. The WTA
configuration can amplify the most active groups and suppress the weaker
ones, thus enhancing the contrast of the neurons activity. Depression of
synapses that are stimulated with low frequencies is a very important fea-
ture in the pattern recognition task. This is because different neurons have
to learn different inputs. However, the most active neurons tend to fire for
both patterns, while weak neurons do not fire for any pattern. The gain of
potentiated neurons should be very high in order to lead to different postsy-
naptic activity, depending on the frequency with which they are stimulated
and on the current state of the synaptic weight (potentiated or depressed).
The number of patterns that can be learned is limited by the number of
neurons on the chip. Here it was shown that four patterns can be learned.
However, clusters become smaller when more patterns have to be learned
and the classification accuracy of postsynaptic spiking degrades with more
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patterns. A solution would be to fabricate neuromorphic chips with more
than 256 neurons. This would also be a solution for learning long sequences
(with more than five elemetns) in the sequence learning task which was car-
ried out and explained in chapter 4. With the implementation of the serial
order architecture on the ROLLS chip, it was shown that building hierarchi-
cal neural networks on neuromorphic hardware lets the chip successfully
learn sequences and hence autonomously perform a cognitive task when
interfaced with a robot. Furthermore, the ROLLS chip is not only able to
account for different learning behaviours that were inspired by the compu-
tation carried out in cortex, but it can also be used for studying the plausi-
bility of different cognitive and neuronal models. Here, it was shown that
a serial order architecture inspired by Dynamical Neural field theory leads
to the desired behaviour of learning and recalling sequences with different
length. The next step is to implement this model on another ROLLS chip
that has a different setup which can more easily be interfaced with a robot.
After retuning the biases for this chip, the robot should learn to associate
different positions of visual input coming from a DVS with a movement
that it has to make. With this, the behavioral loop can be closed. In future
studies the different learning abilities of the chip can be used to implement
different neural networks that eventually lead to low-power, biologically-
inspired solutions for machine learning tasks, and cognitive robotics.
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Appendix A

Setting suitable biases

The behaviour of the chip’s neurons and synapses can be modified by chang-
ing the biases of the transistors. This is a challenging task because of highly
nonlinear and coupled dynamics of the circuits. The circuits on the chips are
very sensitive to small changes in the biases and the challenge lies in find-
ing comparably small ranges in which the desired behaviours, e.g. firing
rate, WTA behaviour, and learning are in accordance. Because of mismatch,
different power supplies, temperature and different setups of the chip, bi-
ases have to be retuned for each device. In the following I will show the
circuits together with the description of the biases which can be modified.
In addition, the values of the biases that were used for the unsupervised
learning task and the values for sequence learning are listed in the tables.
These biases work well for the device that was used in the experiment, but
they will have to be retuned for different devices. In the tables I will give
a broad overview which biases most likely have to be changed and what
are their purpose in the different experiments. These tables can be used as
a guidance if the experiments need to be carried out on different chips in
order to speed up the bias tuning.
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TABLE A.1: Biases of the silicon neuron

Parameter Description Notes Pattern
Recogn.

Sequence
Learning

IF_RST Controls the
reset threshold
current

1pA 1pA

IF_DC Controls a
constant
current injected
to all neurons

Small injected
current helps
neurons to be
more excitable,
can be set to
ground in these
experiments to
avoid
spontaneous
firing because
of
self-excitation

1pA 1pA

IF_BUF Buffer for
oscilloscope

10.9nA 10.9nA

IF_ATHR Neuron’s
adaptive
threshold
current

Small, to avoid
fast decrease in
activity

1pA 1pA

IF_RFR1 Controls the
duration of the
neuron’s
refractory
period

Small voltage,
e.g. high
current, to
make fast
presynaptic
firing
possible,leads
to increased
probability of
learning

49.7nA 1.5nA

IF_RFR2 Controls the
duration of
some specified
neuron’s
refractory
period

Same as above,
neurons can be
set to have
different
refractory
periods

48.2nA 1.5nA

IF_AHW Controls the
adaptaion time
constant

No adaptation
required,
therefore set to
smallest current

1pA 1pA

IIF_AHTAU Neuron’s
adaptive Tau

5.8nA 7.4nA
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FIGURE A.1: Silicon neuron schematics. The NMDA block im-
plements a voltage gating mechanism; the LEAK block mod-
els the neuron’s leak conductance; the spike-frequency adap-
tation block AHP models the after-hyper-polarizing current
effect; the positive-feedback block Na+ models the effect of
the Sodium activation and inactivation channels; reset block

K+ models the Potassium conductance functionality.



Appendix A. Setting suitable biases 57

TABLE A.2: Biases of the silicon neuron (continued)

Parameter Description Notes Pattern
Recogn.

Sequence
Learning

IIF_TAU2 Time constant
of the neurons

Small for
unsupervised
learning, make
specified
neurons
maximally
excitable;
increase for
sequence
learning to
avoid
spontaneous
self-excitation

1.5pA 22.6pA

IF_TAU1 Time constant
for specified
neurons

Can be used if
some neurons
do not stop
firing, set
neurons to Tau1
and increase
this current

3.6pA 24uA

IF_NMDA Controls the
sensitivity of
the neurons

1.4pA 1pA

IF_CASC Controls the
cascode current

1pA 1pA

IF_THR Controls the
neuron’s firing
threshold

small to make
neurons
maximally
excitable

17.8pA 280nA
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FIGURE A.2: Short-term plasticity synapse array element and
dynamics of recurrent synaptic connections. (A) Block dia-
gram of the synapse element. (B) Transistor level schematic
diagram of the excitatory and inhibitory pulse-to-current con-

verters.
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TABLE A.3: Biases for the recurrent synaptic connections

Parameter Description Notes Pattern
Recogn.

Sequence
Learning

WHT_STD Controls the
magnitude of
short term
depression

Minimum, as
STD is not used

1pA 1pA

WHT_INH0 Controls the
magnitude of
the inhibitory
current
component
which is
injected into the
excitatory DPI
when set to
value 1

High to achieve
maximal WTA
behaviour, e.g.
suppression of
low frequency
firing

24uA 8.7nA

PWLK Controls the
pulse width of
the synaptic
current

Increase to
achieve
maximal
strength of
recurrent
connections

1.1nA 448.4pA

WHT_INH1 Controls the
magnitude of
the excitatory
current
component
which is
injected into the
excitatory DPI
when set to
value 2

High to achieve
maximal WTA
behaviour, e.g.
suppression of
low frequency
firing

24uA 199.4nA

WHT_EXC Controls the
magnitude of
the excitatory
weight
independent
when set to
value 0

High to achieve
maximal WTA
behaviour, e.g.
excitation of
neighbouring
neurons

665.2nA 110.9nA

WHT_EXC1 Controls the
magnitude of
the excitatory
current
component
which is
injected into the
excitatory DPI
when set to
value 2

High to achieve
maximal WTA
behaviour, e.g.
excitation of
neighbouring
neurons

2.6uA 1.4uA
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TABLE A.4: Biases for the recurrent synaptic connections (con-
tinued)

Parameter Description Notes Pattern
Recogn.

Sequence
Learning

WHT_EXC0 Controls the
magnitude of
the excitatory
current which
is injected into
the excitatory
DPI when set to
value 1

High to achieve
maximal WTA
behaviour, e.g.
excitation of
neighbouring
neurons

1.3uA 291.2nA

WHT_INH Controls the
magnitude of
the excitatory
weight when
set to value 0

High to achieve
maximal WTA
behaviour

24uA 3.8nA

DPIE_THR Controls the
threshold of
excitatory
synapses

Not too high,
sequence
learning: avoid
spontaneous
switching;
pattern recogn.:
let inhibition
switch off
activity

146.1nA 33.1nA

DPIE_TAU Controls the
time constant of
inhibitory
synapses

High for
pattern recogn.:
slow excitation,
inhibitory
neuron can shut
off activity,
lower for seq.
learning:
needed for
memory

2.5nA 402.2pA

DPII_TAU Controls the
time constant of
excitatory
synapses

Small for fast
inhibition;
higher to make
it slower for
retaining
memory

2.2pA 1pA

DPII_THR Controls the
threshold of
inhibitory
synapses

High for strong
inhibition, let
only a few
neurons learn
in pattern
recogn., lower
for sequence
learning, for
more activity

5.3uA 262.6nA
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FIGURE A.3: Post-synaptic learning circuits for evaluating the
algorithm’s weight update and ’stop-learning’ conditions. The
DPI circuit MD1-5 integrates the post-synaptic neuron spikes
and produces a current proportional to the neuron’s Calcium
concentration. Three current-mode winner-take-all circuits
WTA, WTAUP, and WTADN compare the Calcium concentra-
tion current to three set thresholds sl_thmin! , sl_thdn!, and
sl_thup!, while the neuron’s membrane current is compared

to the threshold sl_memthr!.
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TABLE A.5: Biases for implementing the learning rule

Parameter Description Notes Pattern
Recogn.

Sequence
Learning

SL_THDN Controls the
threshold in
the learning
rule, sets the
limit of LTD

Set higher to
obtain LTD for
higher
frequencies

2.4uA 2.4uA

SL_THUP Controls the
threshold in
the learning
rule, setting
the limit of
LTP

Higher than
SL_THDN, to
obtain LTP for
higher firing
frequencies

24uA 24uA

SL_MEMTHR Controls the
membrane
threshold

High to
decrease the
probability of
pre-, postspike,
leading to LTP

121.6nA 121.6nA

SL_BUF Reset buffer
bias of the
postsynaptic
learning
circuit

151.2nA 115.2nA

SL_THMIN Sets the
minimal
threshold for
learning
transitions

High to avoid
learning in
some neurons;
keep random
weights for
learning at a
later stage

49.2nA 49.2nA

SL_WTA Compares the
probability of
LTD, LTP and
stop learning

115.2nA 115.2nA

SL_CATHR Controls how
high the
calcium
variable has to
be in order to
make learning
transitions

High to avoid
learning in
some neurons
to keep random
weights for
learning at a
later stage

24uA 24uA

SL_CATAU Controls the
calcium
variable’s time
constant

Low, to get a
fast increase of
calcium

4.9uA 4.9pA

SL_CAW Controls the
calcium
variable’s
weight

High for large
increase in
calcium after
only a few
postsyn. spikes

24uA 24uA



Appendix A. Setting suitable biases 63

TABLE A.6: Biases for the dynamics of the learning synapses
and long-term potentiation

Parameter Description Notes Pattern
Recogn.

Sequence
Learning

PA_WDRIFTDN Controls how
much the
weight is
passively
drifting
towards w

min

during the
resting state

low, to avoid
passive
transitions

5.7pA 15pA

PA_WDRIFTUP Controls how
much the
weight is
drifting
towards w

max

during the
resting state

Low, to avoid
passive
transitions

7.7pA 29.7pA

PA_DELTAUP Controls the
amplitude of a
digital up
jump

High, same
value as
PA_DELTADN,
so that only a
few spikes lead
to LTP

92.7nA 1.4nA

PA_DELTADN Controls the
amplitude of a
digital down
jump

High, same
value as
PA_DELTAUP

92.7nA 1.4nA

PA_WHIDN Sets the
strength of the
weight gain

Maximum for
maximal gain
of the
potentiated
weights

19.8uA 6.8uA

PA_WTHR Controls the
threshold of
plastic weight

High to obtain
more LTD than
LTP due to drift

3.1uA 13.9uA

PA_WDRIFT Controls the
strength of
passive drift
rates

Low, to avoid
passive
transitions

40.6pA 164.8pA

PA_PWLK Controls the
pulse width of
the synaptic
current of
learning
synapses

Increase to
make neurons
with
potentiated
weights fire
more

1.1nA 448.4pA

PDPI_BUF Reset buffer of
the learning
synapse

85.1nA 85.1nA 85.1nA
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TABLE A.7: Biases for the dynamics of the learning synapses
and long-term potentiation (continued)

Parameter Description Notes Pattern
Recogn.

Sequence
Learning

PDPI_TAU Controls the
time constant
of plastic
synapses

Low, to make
plastic synapses
fast

478.2pA 727.8pA

PDPI_THR Controls the
threshold of
plastic
synapses

High, to
increase gain of
the plastic
weights

136.5nA 44.1nA

FIGURE A.4: Long-term plasticity synapse array element. (A)
Plastic synapse configuration logic block diagram. (B) Tim-
ing diagram for broadcast and recurrent activation modes in
one synapse using 4-phase handshaking protocol. Dashed red
lines show the sequence between signals. (C) Schematic di-
agram of the bi-stable weight update and current generator

blocks.
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