
Obstacle avoidance and target acquisition with an event-based

camera on a neuromorphic chip

Alexander Dietmüller & Hermann Blum
INILabs

ETH Zürich

January 2017

Abstract

Neuromorphic hardware (and neuromorphic com-
puting in general) show promise to reduce compu-
tational effort and energy consumed in robotic plat-
forms for vital tasks like obstacle avoidance and tar-
get acquisition, in comparison to conventional com-
putation. But neuromorphic hardware still faces
limitations that make its usage challenging, such
as variance of components as well as their currently
limited scale and precision.

In this project we use the neuromorphic
chip ROLLS and the robotic platform PushBot,
equipped with eDVS to provide a proof of con-
cept implementation of obstacle avoidance and tar-
get acquisition, as well as the combination of both,
completely on neuromorphic hardware.

To our knowledge, this is the first time this has
been done and our project illustrates feasibility,
promises and limitations of this approach.

1 Introduction

Collision avoidance is a key task for mobile robotic
systems to ensure safety of both the robot itself
and any other robot or human in it’s environ-
ment. Navigation in unknown environment is an-
other unavoidable task for many robotic applica-
tions (whether rescue missions, mars exploration
or automatic vacuum cleaners) and it often does
not only require obstacle avoidance but also target
acquisition.
Current robots have limited capabilities and are
therefore often separated from humans in safety
cages or similar, because both tasks above require

Figure 1: The pushbot platform developed by Con-
radt et al. [7]

a lot of computational effort and energy and are
therefore draining the robots power and generally
taking away resources from other tasks.

Neuromorphic circuits bring interesting proper-
ties such as large-scale parallel processing, col-
location of computation and memory and event-
based computing from biological neural networks
into classical circuit based systems. As these prop-
erties make real-time processing of large amounts
of sensorial information possible in an energy-
efficient way, they are particularly interesting for
autonomous robotic systems.

1

In this project we present a proof of concept for
an autonomous robotic system that performs ob-
stacle avoidance and target acquisition in an un-
known environment. All computation for this sys-
tem is done on the mixed-signal ‘Real-time On-Line
Learning Spiking’ (ROLLS) neuromorphic proces-
sor [8]. Sensory input is provided by a Dynamic
Vision Sensor (DVS) [4] and other sensors, e.g. a
gyroscope. Both are provided by the robotic plat-
form ”PushBot”, developed by Conradt et al. [7],
that was used for this project.

2 Methods

Our system runs on an semi-autonomous robotic
platform. This consists of a robot with differen-
tial drive and mounted eDVS vision sensor called
‘PushBot’ and the neuromorphic chip ‘ROLLS’,
which is connected to the micro-computing chip
‘parallella’. Parallella and PushBot are connected
via Wi-Fi and parallella is used to manage the data
flows between ROLLS and PushBot. No computa-
tion is done on parallella, only transformation of
data formats and routing of information.

2.1 Hardware

ROLLS device
on the parallella board

“PushBot” robot

Figure 2: The robotic setup used in this work: the
neuromorphic processor ROLLS is interfaced wire-
lessly to the PushBot through the microcomputer
parallella

ROLLS The ROLLS neuromorphic processor
comprises 256 Adaptive-Exponential integrate and
fire (AdExp IF) silicon neurons, implemented us-
ing analog electronic circuits. The neurons ex-
press biologically plausible neural dynamics in-

cluding configurable refractory period, spike fre-
quency adaptation, and time constant of integra-
tion. The 256 neurons on the ROLLS chip can
be connected to each other and to external signals
via three sets of synapses: each neuron has 256
programmable (non-plastic) synapses, 256 learn-
ing (plastic) synapses, and 4 auxiliary (“virtual”)
synapses used to stimulate neurons from the par-
allella. The programmable and on-chip routing on
the ROLLS that supports all-to-all connectivity al-
lows us to implement any arbitrary neural archi-
tecture. However, the synapses can assume only
one of 4 possible synaptic weight values that can be
programmed via a 12-bit temperature compensated
bias-generator. An extra digital circuit allows the
user to specify if the synapse is excitatory (positive
weights) or inhibitory (negative weights).

PushBot and eDVS The PushBot mobile robot
is equipped with an embedded DVS silicon retina.
Each pixel of the DVS reacts asynchronously to a
local change in luminance and sends out an event.
Every event contains the coordinates of the sending
pixel (x, y), the time of event occurrence (t), and
its polarity (pol: “on-event” or “off-event”). Due
to the asynchronous sampling, the DVS is charac-
terized by an extreme low latency, which results in
µs time resolution.
As the DVS detects the spatio-temporal changes in
a visual scene, a static camera only perceives mov-
ing objects. However, on a moving robot, the DVS
produces a continuous stream of events at the ob-
jects’ boundaries, where changes are induced by the
sensor motion. The fact that the DVS also emits a
fairly large amount of input-dependent noise makes
the use of this sensor particularly challenging in
navigation scenarios.

The PushBot platform also features an IMU sen-
sor with various components that we use to get
sensory feedback of the robot’s heading direction
(compass) and it’s turn velocity (gyroscope).

parallella The parallella computing platform is
able to stimulate neurons on ROLLS, receive spike
events from ROLLS and DVS events from the Push-
Bot as well as sampling the PushBots sensory in-
formation of the IMU. It is also able to set synap-
tic connections on the ROLLS and change the bias
settings in real time. We make use of the ‘NC-

2

SRobotLib’ Library developed at INI to interface
the ROLLS chip and communicate with the robot.

The same hardware setup is used in different
other projects at INI, such as a predecessor project
by Michel Friesing, and we did not develop or im-
prove any hardware components. However, the re-
furbishment and improvement of the software li-
brary is an integral part of our work.

2.2 Neuronal architecture

2.2.1 Robot Commands

Figure 3: System representation of the PushBot.
The state is defined by the heading direction ϕ and
the forward velocity v.

One of our goals is to implement all logic in
ROLLS, meaning that parallella should only for-
ward signals. This leads to the first challenge: Con-
trolling the PushBot with neuron populations on
ROLLS.

We model the PushBot movement with forward
velocity v and angular velocity ϕ̇, following the defi-
nition from figure 3. We encode both variables with
the average firing rate of a population of neurons
on the ROLLS. To encode the sign of ϕ̇, we use 2
populations of equal size that inhibit each other in
a winner-takes-all (WTA) dynamic. This way, the
decision of turn direction is made in ROLLS, since
only one of the turning populations will ever be ac-
tive at the same time.
We use three populations of 16 neurons each to rep-
resent ‘speed’, ‘angular velocity (left)’ and ‘angular

velocity (right)’.
On parallella, the firing rates are computed as fol-
lows: In regular sampling intervals the number of
spikes in the respective population is counted. As
a first approach we mapped these counts propor-
tionally to velocities:

v ∝ nspeed
ϕ̇ ∝ nleft − nright

However, this approach required relatively long
sampling intervals (≈200ms) to provide sufficiently
smooth output. To improve our reaction time, we
implemented a first order low pass filter with pa-
rameter α to update an estimate for spikes per in-
terval and population.

nestimate = α · nold estimate + (1− α) · ncount

The parameter α is related to a time-continuous
low pass filter by discretizing with the respective
sampling time T . The desired time constant τ
of the time-continuous filter determines α accord-
ingly:

α = exp

(
−T
τ

)
We used a sampling time of 50ms and a time

constant of 100ms resulting in α = 0.6
The number of spikes per interval and population

is normalized over interval duration and population
size to get the firing rate per neuron and second.
Finally multiplied by a user defined scaling factor
this rate is sent to the robot (also every 50ms).1

With these translational methods we can imple-
ment all driving logic on ROLLS and only use par-
allella for signal transformation and -passing.

2.2.2 Obstacle Avoidance

The first goal of our neural architecture is ro-
bust obstacle avoidance. The robot should be able

1We were not able to obtain documentation of the Push-
Bot platform defining the unit of the motor velocities.
Therefore, the magnitude of this scaling factor remains as
arbitrary as the input the PushBot receives.

3

DL

DR

OL

OR -3-3

3

exc

sp

4
2

spike count

drive right
spike count

DVS frame

Parallella

speed-2

3

-2

gyro

We chose however to connect the robot over a serial port to the Parallella to make connection
more robust and the small size, weight and power consumption of the Parallella allow it to be
mounted on the robot as well.

The second supported robot is the PushBot, also provided by NST. The PushBot has a similar
interface as the OmniRob and can also be easily accessed with the build-in WiFi module[8] over
a socket application programming interface (API).

Figure 13. The two robotic platforms currently supported by omnibot-lib: on the left the PushBot
and on the right the OmniBot (see also [12, 5]) for more information

2.4.1 Interface

RobotHost PC

robot control
and connectivity

robot listener

Robot.h

OmniRobot.h

PushBot.h

RobotListener.h

USBConnector.h

TCPConnector.h

Figure 14. Header files defining the interfaces to the robots and the robot listeners

The Robot was controlled by sending the necessary instructions over the serial connection from
the Parallella. The most important instructions are listed in table 1 on the following page:

Similarly to the DVS camera, di↵erent properties of the OmniBot are monitored asyn-
chronously by the RobotListener object, such as the actual servo states, if and which bumper
has been hit, making use again of the observer pattern as can be seen in figure 15 on page 15.
These states are logged as formatted text or processed immediately, such as the bumper states,
that trigger an emergency stop of the robot until the next drive command is send. At the
moment the Robot is polled in an interval of 1 s, future updates of the OmniBot firmware will
feature a broadcast function. However, logging the robot parameters is currently disabled as it
is favored to directly log the mapped keyboard inputs (see also figure 9 on page 11 for a list of
the mappings) instead of the polled robot parameters, amounting to the same result. Linux has

13

drive left
spike count

Figure 4: Connectionists’ plot of the obstacle avoid-
ance architecture.

to navigate in an unknown environment without
crashing into obstacles.

We only consider the lower half of the DVS field
of view (FoV) for this task, since objects in the up-
per half are either above the robot or very far away
and therefore will not cause collisions. A popu-
lation of 32 neurons on ROLLS is used to repre-
sent obstacles. Columns of 4 × 64 DVS pixels are
mapped to one neuron each (therefore all of the 128
× 64 DVS pixels in the lower half of the FoV have a
corresponding neuron in ROLLS). For every event
in a column, the respective neuron is stimulated.
After sufficient stimulation, the neuron will spike
and therefore signal the detection of an obstacle.

In the next step, obstacles need to actually influ-
ence the robot’s behavior. We realize this by con-
necting the obstacle population with the command
populations described in 2.2.1. The half of the ob-
stacle population representing obstacle on the left
has excitatory connections to the turn right popula-
tion and vice versa. Following a concept introduced
by Braitenberg [1], we implement a simply dynamic
that enables the robot to turn in response to ob-
stacles: In absence of obstacles, we drive straigt
forward. Any detection of an obstacle will slow
down the robot. If there are more obstacles left
than right, we turn right, otherwise left.

In order to represent the ‘base speed’ in the ab-

sence of obstacles we implemented a constantly ex-
cited population of 8 neurons that excites the speed
population while all neurons in the obstacle pop-
ulation have inhibitory connections to the speed
population, causing the robot to slow down in the
presence of obstacles (with stronger deceleration for
bigger/more obstacles).

This setup already works well and is used for the
first experiments, but is overwhelmed by cluttered
environments since the robot will see obstacles ev-
erywhere.
Even worse, any turn will increase the number of
incoming DVS events drastically making the robot
to turn on the point forever. This is because the
DVS senses changes on the ‘retina’. Therefore, any
movement of the camera will cause DVS events. We
did observe that the rate of DVS events increases
approximately proportional with the angular veloc-
ity.

To cancel out this effect, we inhibit the obsta-
cle detecting neurons while turning. This inhibi-
tion was initially realized as a connection from the
turn populations to the obstacle populations. In
the newer versions of the architecture we use the
gyroscope of the PushBot. The implementation is
described in more detail in 2.2.4.

Up to this point, obstacles in the FoV only dif-
fer in the rate of DVS events they produce. An
obstacle at the edge of the FoV would have the
same influence as one directly in the way of the
robot. In order to increase the general speed of the
robot and improve the behavior in cluttered en-
vironments, obstacles in front of the robot should
have a greater influence on speed and turning than
obstacles on the edge of the FoV. Therefore, con-
nections to the turn and speed populations from
neurons representing obstacles in the center need to
be stronger. Since our available synapse weights on
ROLLS are limited (as described in 2.1) we achieve
this by varying the number of connecting synapses
to the respective population. Neurons representing
obstacles in the center of the FoV are connected
to all neurons in the command populations, neu-
rons representing obstacles on the edge of the FoV
are connected to only one neuron in the command
populations, with the number of connections de-
creasing linearly in between.

In conclusion we were able to implement obsta-
cle avoidance using raw DVS input with just 32
additional neurons and carefully linking the differ-

4

ent parts to be able to distinguish obstacle posi-
tions and react accordingly: Strong reactions for
obstacles in front of the robot, weaker reactions for
others.

2.2.3 Target Acquisition

edvs
neurons

Exc.

DL

DR
OL
OR

Sp.

Target
DNF

Gyro

Figure 5: Connectivity matrix of the full neural
architecture with obstacle avoidance, target acqui-
sition and gyroscope

We set the requirements for target acquisition
with respect to the limited number of neurons on
ROLLS in order to ease the recognition of the tar-
get. We represent the target by a (second) PushBot
with a LED blinking at 200 MHz. This will gener-
ate DVS events of high rate, thus sticking out from
the high background activity. Our goal is to recog-
nize this target and keep it in memory if the target
vanishes for short periods of time.

However, in comparison to obstacle avoidance,
this recognition task was still much more complex
as the walls of the robotic arena were lower than the
LED of the target PushBot, making it necessary
to filter out a great amount of background DVS
activity as shown in figures 8 or 11.

We realize target acquisition with two popula-
tions of 64 neurons each. The first population is
used as a filter for DVS input. Similar to ob-
stacle avoidance, every neuron in this population
receives input from columns of 2 × 64 DVS pix-
els, this time using the upper half of the image.

Since the neurons require a steady stream of events
to emit spikes themselves, we effectively filter out
background noise with this population.
Besides it’s filtering property the neural population
features a WTA dynamic which enables it to find
local maxima.

The second layer represents the target position.
Every neuron in the filter population excites ex-
actly one neuron in the memory population. In
this population we use global WTA dynamics: Ev-
ery neuron excites their close neighbors while in-
hibiting all others. This way we pick the global
maximum of the local maxima the filter layer pro-
vides and also get sticky behavior in order to keep
the target position in memory.

Analog to the implementation of obstacle avoid-
ance, the neurons in the memory population are
connected to the turn population. Neurons rep-
resenting a target on the left excite a turn to the
right right and vice versa. Since we need to turn
stronger if the target is on the edge of the FoV com-
pared to a target in the center, we use the same
connection principle from obstacle avoidance, but
inverted: Neurons representing a target in the cen-
ter of the FoV are connected to one neuron in the
turn population, with the number of connections
linearly increasing to both sides up to target neu-
rons representing the edge of the field of view with
all exciting all neurons in the turn population.

Since we have no effective knowledge about the
distance to the target (which would enable us to
stop in front of it), we only use target acquisition
for turning.

Both target acquisition and obstacle avoidance
are connected to the command populations. To en-
sure that obstacle avoidance is always prioritized
over following the target, the connections from tar-
get acquisition are weaker than those from obstacle
avoidance.

With this architecture we enable the robot to
follow the target and avoid an obstacle, if necessary.
While we can keep the target in memory, we are not
able to adapt the ‘remembered position’ while we
are turning which can lead to undesired behavior
(see 3.7). (Ultimately unsuccessful) attempts to
improve this are described in 2.2.5.

5

2.2.4 Proprioception

As described above we receive many more events
from DVS while turning, which can lead to turning
movements which are longer than necessary, since
the additional events are recognized as obstacles
and keep the robot turning. Therefore, we need
some degree of proprioception to recognize that we
are turning and, as described above, inhibit the
neurons receiving DVS events as a coutermeasure,
similar to how saccadic suppression works in the
mammalian eye.

In a first approach we use the activity of the
command population as indication of actual turn-
ing. Generally this approach works well since when
the command population is active, we are actually
turning. In some cases, e.g. if the robots movement
is limited by obstacles and it can’t turn, this infor-
mation is false and will suppress events from actual
obstacles since the robot mistakenly ‘believes’ it is
turning.

In the current version of the architecture we are
therefore using the gyroscope data, which provides
reliable information about current angular veloc-
ity. In contrast to DVS events, this is an integer
number sampled every 50ms, so it can’t be directly
used to stimulate ROLLS. Similar to the speed we
couldn’t obtain information about the units of this
sensor, but experimentally determined the value of
the sensor output at (absolute) maximum angular
velocity of the PushBot (≈ 8000) and at maximum
angular velocity in our application (≈ 2000).

We use this information to transform the sensor
output into a number of ROLLS spikes proportion-
ally.

On ROLLS we define two populations of
eight neurons each to represent ‘turning to
the left/counterclockwise’ and ‘turning to the
right/clockwise’. Every sampling step of the sensor
they will receive the calculated number of stimula-
tions.

Finally, we use the defined populations to inhibit
all populations that receive input from DVS, i.e.
the obstacle and filter populations.

This way we successfully implement neurons in
ROLLS that sense if the robot is turning and inhibit
the populations receiving DVS input to compensate
the additional events.

Figure 6: Different shifting inputs. The gradual
difference was implemented using different numbers
of synaptic connections from the input population.
Bottom: Activity in target neighborhood.

2.2.5 Extension of Target Memory

As the experiments in 3.7 show, our general target
acquisition architecture from section 2.2.3 fails if
the target is out of sight. We can tune the target
memory in a way that it becomes ‘sticky’ and keeps
the target in memory, but this remains unaware
of any turning and therefore might produce wrong
behavior: E.g. if the target was on the right when
it was lost, but the robot keeps turning to the right
while navigating around some obstacles, it will still
remember the target on the right even though it
might be on the left now.

This wouldn’t be a big problem if we were able to
detect the target while turning, as the robot would
just turn until it finds the target again. However,
as described above, turning induces a high rate of
DVS events and as our target is marked by a high
rate of DVS events, we can’t reliably distinguish the
target from the background if the angular velocity
is too high.

We tried two approaches in order to address this
problem: Our first approach was to update the tar-
get memory with information from the gyroscope.
Our second approach does not memorize the rela-
tive target position, but makes use of the compass
sensor and memorizes the absolute target position.

Memory Shifting As described in 2.2.3, we re-
member the target with a ‘sticky’ WTA Kernel in
a population of 64 neurons. We want to shift the
position of the actively spiking neighborhood ac-
cording to the activity in the populations receiving
input from the gyroscope, as described in 2.2.4.

6

Figure 6 shows different inputs we tried to apply
to the target memory population in order to shift
it. Without loss of generality, we only describe the
problem of ‘shifting to the right’.

Our first idea was a global ramp input. However,
the local difference was too small to overcome the
‘sticky’ behavior and we either got a non-moving
target position, or, for increased influence of the
global ramp, we would only shift the target position
to the absolute right without any transition (Since
the maximum of the ramp becomes stronger than
the active neighborhood).

Both the idea of local ramp and local step work
in the same principle: There are different inputs
shifted by position. This way, there always is one
population closely to the right of our current neigh-
borhood providing a sufficiently strong difference
to (locally) shift active neurons. All other (inter-
fering) populations are inhibited based on the cur-
rent position of the active target neighborhood. All
shifting populations receive input from the gyro
populations, so that the single population that is
not inhibited can cause a correct shift. However,
both methods could not be realized on ROLLS as
we could not use our available weights to create a
WTA-kernel that was both ‘shiftable’ and still had
the generally required filter and memory properties
as described in 2.2.3.

Global Position Memory The amount of re-
quirements the kernel of the target memory popula-
tion had to satisfy were to high to effectively imple-
ment a ‘shifting’ method. Therefore, we searched
for a completely different approach: Schneegans
and Schöner [9] describe a mechanism of coordinate
transformation that allows us to combine the gen-
eral heading direction of the robot, which can be
read from the compass of the IMU, to the relative
target position, found by processing DVS events,
into the absolute angle position of the target with
respect to the robot’s position.

The global position is updated as long as the tar-
get is in the FoV and memorized when it is lost.
This memorized position is then transformed back
into a relative target position, which is used to ex-
cite the turn populations.

Using 108 neurons, we could realize a version of
this transformation on ROLLS that distinguishes
6 different heading directions. It was possible to

tune this architecture such that the memory was
updated as long as the target was in the FoV
and the memory was kept if the target was lost.
Furthermore, when turning the robot (effectively
changing it’s heading direction) while covering the
DVS lenses, the memory, together with the head-
ing direction, would activate different cells in the
transformation matrix, representing different rela-
tive positions of the target.

However, our realization was not robust enough
to ‘survive’ the noise received by the DVS while the
robot was driving around. In addition, the compass
sensor of the PushBot was not reliable enough. A
360 degree turn, if done too quickly, can lead to a
compass output difference of up to 180 degrees.

Another critical point is the detection of false
targets. The simple target detection we use in our
system will occasionally detect a target for other
objects that generate high rates of DVS events, e.g.
vertical edges (see 3.7). This will immediately up-
date the memory position and we will stop turning
back to the original, correct, target.

We were therefore not able to provide a version of
the global memory usable in ‘real’ scenarios, nev-
ertheless this architecture is a little more easy to
tune than the shifting memory (although it is still
difficult).

2.3 Library

Our starting point is the ‘NCSRobotLib’ created by
INI Labs and at the CapoCaccia2 workshop, which
provides an infrastructure to connect all platforms,
i.e. PushBot, eDVS and ROLLS. We made various
small improvements to different parts of the code
and will list the most relevant additions below.

Furthermore, there exists a javascript framework
‘WebAER’ to set ROLLS connections and biases.

All our code can be found in our group
within the gitlab of INI.3. Of particular interest
are the repositories NCSRobotLib for the library
and pushbot target and obstacle for the project
source code.

2http://capocaccia.iniforum.ch/
3https://code.ini.uzh.ch/semesterproject_hermann_

and_alexander

7

2.3.1 Architecture

Setting up the neuronal architecture with javascript
while the rest of the code is written in C++ in-
troduces some limitations, e.g. processing of DVS
events has to be handled in both parts of the code
(in C++ it needs to be specified where the events
will be sent, which is determined by the architec-
ture specified in javascript). To simplify this setup
we implement utilities to set up the neuronal ar-
chitecture in C++. Similar to the spiking neural
network simulator BRIAN [2] we specify groups
of neurons. These groups can then be connected
to each other. An important detail is that these
groups also contain the respective neurons’ indices
on ROLLS, so they can later be used to stimulate a
specific group of neurons or assign a received spike
to a defined group.

Internally the whole architecture is represented
by a connectivity matrix and we provide sev-
eral functions to easily connect neurons or neuron
groups in various ways, e.g. every neuron in a group
to all neurons in another, every neuron to a selec-
tion of neurons in another group, specified by a
weighting function, connect with a kernel to close
neighbours.

This piece of software makes it easier to define
the neural architecture in C++ and connect inputs
and outputs to the respective populations.

2.3.2 Plotting

Experimental data needs to be displayed, but to
keep the focus on the experiment and not on the
processing of data, we automated as many tasks as
possible.

First attempts included sending all logging data
to a host computer via UDP, but the humongous
amount of DVS events (several thousand per mil-
lisecond) quickly managed to overwhelm the net-
working capabilities of parallella, so we went back
to saving the log data on parallella. To avoid filling
up all available space, we provide an easy script to
fetch all current log data from parallella for pro-
cessing on the host computer.

This processing is automated using ‘python’,
‘jupyter notebook’, ‘pandas’ and ‘matplotlib’ (com-
mon software for these task well known in the scien-
tific community). We provide functions to quickly
browse and load existing log data. Furthermore the

library has the capability to create plots suited for
our architecture, it can:

• accumulate DVS events over a given time pe-
riod and plot them as one frame

• plot neuron spikes over time and label and
color activity according to specified neural
populations

• create plots combining above functions easily
for several points in time

(All plots in section 3 have been created this way)
Additionally, we recorded our robot from above

in most experiments. To turn these videos into a
single image we also provide a script using ‘ffmpeg’
and ‘imagemagick’ to split the video into frames
and overlay them. (Also used for the plots in 3)

These scripts enable fast processing of logs gen-
erated by NCSRobotlib for other users as well.

3 Experimental Results

The general robustness of our obstacle avoidance
setup as well as it’s limitations were tested in a wide
range of experiments. We tested it against different
types of obstacles and in different surrounding con-
ditions. Concerning the parameters we used, such
as ROLLS bias settings and program constants, we
did not perform a search to find the global optimal
settings as the whole project was a proof of concept
to show what is in principle possible with the in-
troduced neuromorphic robotic system. However,
the experiments shown here were conducted after a
general parameter search for a setting that showed
a reasonable balance of robustness and movement
speed.

The neural architecture evolved with the analy-
sis of experimental results and it is due to the time
limitations of this semester project and the decision
together with our supervisors to focus on the devel-
opment of target memory rather than the charac-
terization of the system that we did not perform all
the tests with the final version of the architecture.
Therefore, we describe the stage of the architecture
with every experiment if it differs from the most re-
cent version.

All experiments were conducted by recording the
activity from DVS and ROLLS, if necessary also
from the gyroscope, a video of the experiment, and

8

additionally the movement commands send to the
PushBot.

Most of our experiments are set in a controlled
‘arena’ environment with both white floor and
walls. We do not want the walls to interfere with
the robot behavior while still allowing the robot to
avoid them. We achieve this by attaching a high-
contrast tape to the top of the walls. The tape is
positioned at a height adjusted for the position of
the camera on the PushBot. Only if the robot is
close (≈ 5cm) the tape will be seen in the lower
half of the DVS image (which is used for obstacle
avoidance) – but as soon as it is seen it provides
a lot of input due to it’s high contrast. This way
the robot is not influenced by the walls inside the
arena, but is stimulated enough to be able to avoid
them.

For many experiments we will show 1 or 2 ex-
emplary results. This is due to the fact that these
experiments should not only show to what extent
our concept is working, but also how. All experi-
ments were run for at least 3 times and we mention
if there were any inconsistencies between the runs
such as failing obstacle avoidance. However, the
actual trajectories and neural activities will differ
between experiments too much to show a meaning-
ful and useful synthesis of different experimental
runs. Of course, all the data and videos of the ex-
periments are collected in the archive server of INI.

3.1 Different Obstacle Positions

This experimental series was conducted with the
newest version of the architecture as described in
2.2.2.

Obstacles on in the center of the FoV should have
a stronger impact than those on the edges of the
FoV.

Figure 7 shows the robot’s response to different
obstacle positions. The robot always starts with
the same initial position and heading. The obstacle
in this case is an ordinary cup from INI’s kitchen.
Initially, it is placed directly in front of the robot,
while shifting it vertically to the initial heading di-
rection of the robot by 5cm per experiment.

The experiment qualitatively shows the expected
difference in the magnitude of the robot’s response.
For an obstacle that is less in it’s way and there-
fore closer to the edge of the DVS FoV, both the
turn command and the slowdown are weaker. This

Figure 7: Response of the robot on different obsta-
cle positions. The obstacle is shifted vertically to
the robot’s initial heading direction. Left: Over-
lays of the overhead camera images with static time
intervals to indicate the speed. The red line marks
the initial heading direction of the robot. Right:
Activity on the ROLLS for the labeled neural pop-
ulations.

behavior evolves gradually and monotonically with
the shift of the obstacle.
We also observe that not only the horizontal posi-
tion of the obstacle, but also the distance between
robot and obstacle or – more precisely – the relative
size of the obstacle on the DVS image (decreasing
with distance and increasing with size) are of great
importance. The beginning of the experiment with
0cm shift shows that a single neuron in the obstacle
population is not enough to excite the turn popula-
tion. Only as the robot gets closer to the obstacle
and therefore the obstacle occupies more columns
of the DVS lower half image and excites more ob-
stacle neurons the activity is strong enough to start
a turn.

9

Figure 8: Response of the robot to different obstacle colors. Left: Overlays of the overhead camera
images with static time intervals to indicate the speed. Center: Image of DVS events accumulated over
1.5s up to the start of the turn, indicated by the black vertical line in the neural activity plot. Right:
Activity on the ROLLS for the labeled neural populations.

This influence of size and distance is a side-effect
of the obstacle population setup where each obsta-
cle neuron receives input from a DVS image col-
umn, which was implemented to encode horizontal
position.

We can conclude that our architecture indeed
leads to the intended weaker response to obstacles
that are not directly in front of the robot. However,
our setup will also avoid bigger and especially wider
obstacles with a stronger response than small, nar-
row obstacles.

3.2 Different Colors

This experimental series was conducted with the
newest version of the architecture as described in
2.2.2.

Even though DVS events do not contain any in-
formation about color but rather relative contrast,
we do find that the color of obstacle relative to the
background color of the environment is an impor-
tant factor that influences the robot’s behavior. We

show below that this effect is also linked to lighting
conditions and the speed of the robot itself.

In this experiment we placed the robot in the
same initial position inside the arena for all experi-
ment runs. In front of the robot we placed medium
sized obstacles (approx. 5cm height and 3cm di-
ameter) of equal size and shape but different color.
Figure 8 shows the behavior of the robot with de-
fault bias settings moving towards a black, red and
yellow obstacle.

We observe two effects: The robot’s behavior de-
pends on the color of the obstacle, and it does not
successfully avoid obstacles of every color with the
used default bias settings. However, the DVS col-
umn of figure 8 clearly shows the obstacle regardless
of its color. The ROLLS activity plot also shows
spikes in the obstacle populations for all colors. It
is the distance to the obstacle at the time of the
first spikes that increases from the black to the red
and to the yellow obstacle.

As described in 2.2.2: Every event of the DVS
is used as an input to one of the obstacle neurons.

10

However, a certain rate of events is necessary to
make the neuron spike. We make use of this effect
in general to filter out noise.
While the number of events generated by an ob-
stacle generally increases with the robot approach-
ing the obstacle (because the obstacle will appear
bigger on the DVS image), our observation shows
that the contrast between an obstacle and the back-
ground influences the number of DVS events pro-
duced by this obstacle greatly. In this example a
yellow or red obstacle in front of a white wall pro-
duces less DVS events than a black obstacle and
therefore has a worse signal-to-noise ratio. In our
default bias setting the filter threshold is too high
to avoid yellow obstacles. They provide a sufficient
number of DVS events to activate the turn pop-
ulation only when the robot is already too close
and their input is too weak to cause a turn strong
enough to avoid the obstacle at this point.

In general we could find that the PushBot – with
our default bias setting – reliably avoids obsta-
cles of black, red and blue color, while regularly
crashes into yellow obstacles. The experimental re-
sults show that regardless of the bias setting, our
principle of detecting an obstacle by rate of DVS
events and only using the pure neural filtering ca-
pabilities does require to set an arbitrary threshold
that balances the robustness towards noise and low-
contrast-obstacle avoidance.
This threshold can be changed by changing the
ROLLS bias setting for the stimulating synapses,
changing the number of synapses used for one stim-
ulation or changing the number of stimulations per
DVS event.
Additionally, we could already show in a previous
version of the architecture that reliable avoidance
of yellow obstacles is also possible by changing the
connecting weights with which the obstacle pop-
ulation excites the turn and inhibits the speed,
although this leads to a generally very ‘cautious’
robot navigating rather slowly (because it decel-
erates both often and strongly) and turning very
strongly for obstacles with high contrast.

3.3 Different Lighting Conditions

This experiment was conducted with an earlier ver-
sion of the architecture. No gyroscope was used,
instead the turn populations themselves had an in-
hibitory connection to the obstacle population, as

Figure 9: Overlay image of robot trajectory in the
arena at different lighting conditions. Left: Dark
Right: Lighter, but still less light than with regular
conditions.

mentioned in 2.2.2. The described encoding of the
horizontal obstacle position was not used, instead
the whole left and right part of the obstacle popu-
lations were stimulated for an obstacle in the lower
left and right half of the DVS FoV.
The robots default speed (where no obstacles are
present) is slightly slower than in other experiments
using the newest setup.4

The robot is placed in the same initial position
for all experiment runs. The experiment was done
at night, so there was no sunlight, and we used
different office lights to simulate varying lighting
conditions.
In the direct heading direction of the robot an ob-
stacle each of blue, yellow and red color was placed.
A second, black obstacle was placed off the robot’s
initial heading direction but in a way that the robot
would have to avoid it after turning away from the
first obstacle. This was done to test the response
to obstacles both after driving straight and while
turning.

Figure 9 shows the robot’s trajectory for 2 dif-
ferent lighting conditions, both beeing darker than
our usual experimental setup. They are relevant
examples for the general robot behavior at these
lighting conditions as we tested each condition for
at least 3 times.

Our experiments show that the obstacle won’t
get recognized below a certain general brightness
level. This result is in our opinion linked to the
problem of different colors described in 3.2 as the
contrast of obstacles in front of a background is ob-

4The default speed is dependent on both a proportional
factor as described in 2.2.1 and the ROLLS weight bias set-
tings. The exact speed difference could technically be ob-
tained by analyzing the video files, but is not relevant for
this experiment.

11

Figure 10: A cup is moved into the
robot’s FoV while driving forward.
First Column: top view of the
scene at the given point in time
Second Column: DVS image inte-
grated over 1.5s up to the given point
in time
Third Column: neural activity in
the obstacle population
Forth Column: neural activity in
the movement populations

viously dependent on lighting conditions.
Furthermore, the bottom trajectory shows that ob-
stacle avoidance still works reliably for darker light-
ing conditions than our regular ones.

As ‘night vision’ was not part of our project, we
did not further follow the problem of obstacle avoid-
ance in dark environments and consider the robust-
ness of the obstacle avoidance in darker and lighter
environments sufficient for our tasks.

3.4 Moving Obstacles

This experiment was conducted with an earlier ver-
sion as decribed in 3.3.

Moving obstacles are of special interest for imple-
mentations of obstacle avoidance as they are very
common in real world navigation problems and re-
quire the ability to react on changing environments.

The robot is placed in the same initial position
for all experiment runs. Initially, there is no ob-
stacle present in it’s FoV. After the robot starts
moving forward, an obstacle is moved in it’s way.
This procedure is repeated with different distances
between robot and the obstacle and different speeds
of the obstacle.

The robot is successfully avoiding the moving ob-
stacle without difficulties.

3.5 Cluttered Environment

This experiment was also conducted with the
newest version of the architecture. We show that
our architecture enables the robot to navigate in a
cluttered environment.

The robot is placed in the ‘arena’, which is pop-
ulated with black cylinders, roughly 5cm high and
3cm in diameter, as obstacles. The cylinders are
placed randomly.

We find that the robot is able to avoid most ob-
stacles ‘on-the-go’, i.e. without the need to stop
completely, and is also able to drive through rela-
tively narrow gaps (1.5 times as wide as the robot),
as seen in Position 2 in figure 11.

On the other hand it also shows the weak depth-
perception of our robot. Objects further away oc-
cupy less columns in the DVS image and therefore
provide less input to the obstacle populations, but
this is not always sufficient to suppress overly cau-
tious avoidance maneuvers: In Position 3 in figure
11 the robot recognizes the cylinders on the right
as obstacles and turns away from them, although
they are far away and no action would be necessary.
Still, since the current architecture can’t differen-
tiate between a close, narrow and a far-away, wide
obstacle, it makes the correct decision to ensure it
will not collide with the potentially close obstacle.

In different experiment runs we encountered

12

Figure 11: Robot navigationg a clut-
tered environment.
Top: Overlay-ed overhead camera
images with static time intervals to
indicate the speed. The marked
points correspond to the columns be-
low.
Center: Image of DVS events accu-
mulated over 1.5s up to the start of
the turn, indicated by the black ver-
tical line in the activity plot.
Bottom: Activity on the ROLLS
for the labeled neural populations.

problems in the combination of our taped walls and
regular obstacles. Walls were not always recognized
and therefore the robot’s movement was different to
the intended movement as a wall was in it’s way.
As we do not implement motor encoder feedback or
GPS position feedback, the robot could not adapt
to this situation. Occassionally we did observe fail-
ing obstacle avoidance connected to this problem.
As the walls themselves were ‘unnatural’ and the
tape an engineered way to make them visible, we
did not want to develop a solution for this self-
generated and irregular problem.

All in all navigation in a cluttered environment
works smoothly and reliably, although the robot
sometimes unnecessarily avoids obstacles that are
quite far away.

3.6 Cluttered Environment without
Gyroscope

In 2.2.4 we describe that turning increases the num-
ber of DVS events making obstacles seem larger as
they are and we can give our robot some proprio-
ception (by using its gyroscope) to compensate this
effect. In this experiment we examine robot behav-
ior without the gyroscope data.

The robot is placed in the same environment as in
3.5, the only difference in setup being the disabled
gyroscope.

Comparing Position 1 in both figure 11 and 12,
the much greater activity in the obstacle popula-
tion without gyroscope directly shows the missing
inhibition. This leads to keeping the robot turning
while it actually could pass between two objects,

13

Figure 12: Robot navigation a clut-
tered environment without proprio-
ception (i.e. no gyroscope).
Left: Overlay-ed overhead camera
images with static time intervals to
indicate the speed. The marked
point corresponds to the plots on the
right.
Right, Top: Image of DVS events
accumulated over 0.5s at the indi-
cated robot position.
Right, Bottom: Activity on the
ROLLS for the labeled neural pop-
ulations. The gray area marks the
time interval used for the DVS plot.

without the gyroscope the avoidance maneuver is
much longer and the gap between the two cylin-
ders in front of the robot (although big enough) is
not used, since the obstacles are too strong. In ad-
dition the robot is driving more slowly (indicated
by the overlays, which are takes in the same time
intervalls. In figure 11 the distance between two
still images of the robot is greater than in figure
12, indicating higher speed.

Nevertheless, the robot is still able to navigate
the cluttered environment without crashes, but we
conclude that by using the gyroscope the robot is
able to drive faster and go through narrower gaps
while turning more smoothly.

3.7 Target Acquisition

This experiment was conducted with the most re-
cent version of the obstacle avoidance architecture
as described in 2.2.2, but with some differences in
the target acquisition. Different to the architecture
described in 2.2.3, the first layer does not have a
WTA-kernel, only the natural noise-filtering capa-
bility of the neurons is used. The filtered spike train
is fed into the target layer, where we filter out the
global maximum using a mexican-hat kernel that
features a global inhibition and an even stronger
local inhibition, while it is also tuned to have self-
excitatory behavior so the last target position stays
in memory even if DVS input decreases.

The experiment was conducted with a static tar-
get PushBot that has it’s LED blinking at 4 kHz
with 75% on-time. The active PushBot is placed

in the same static position for all experiment runs
finding the target left of it’s initial heading direc-
tion. On the line between the two robots we placed
a small black obstacle, the same one we used in 3.5.

The driving speed of the robot and the neural set-
tings differ a lot from the experiments only showing
obstacle avoidance. This is mostly due to the huge
amount of background activity in the upper half
DVS image generated by the robot’s movement. If
the robot is too fast, this activity will be higher
than the activity of the blinking LED and target
acquisition is not possible anymore with our simple
target recognition method.

Figure 13 shows 1 exemplary run of the exper-
iment. The trajectory shows that the robot suc-
cessfully approaches the target while avoiding the
obstacle.
The ROLLS activity shows that the single target is
successfully found and followed by the WTA ‘tar-
get’ population, but due to the 3 objectives (find
global maximum, update in real time, stay in mem-
ory if target not present), the representation of the
target position in the ‘target’ layer does not move as
smooth as the input ‘edvs layer’ population. This
is part of the reason we later changed the setup of
the two layers to the architecture described in 2.2.3.
The path of the robot is ‘s-shaped’ and this alter-
nating behavior can also be found in the activity
plots of the ‘turn left’ and ‘turn right’ populations
on the ROLLS. This is the result of an attractor-
repeller dynamic between the obstacle avoidance
and target acquisition. As the connection from
target or obstacle representing layers to the turn

14

Figure 13: Robot approaching a tar-
get robot while avoiding an obstacle
on the way.
Top: Overlay-ed overhead camera
images with static time intervals to
indicate the speed. The marked
points correspond to the columns be-
low.
Center: Image of DVS events ac-
cumulated over 1.5s at the indicated
robot position.
Bottom: Activity on the ROLLS
for the labeled neural populations.

populations depend on the relative position of the
target or obstacle to the robot, the ‘strength’ of the
target attractor as of the obstacle repeller increase
of decrease within every turn. Consider for exam-
ple the activity up to position 2. From second 3
to 5 the robot will turn right to avoid the obstacle.
While turning, the obstacle moves to the left of the
FoV, making the repeller effect weaker and weaker.
At the same time, the target moves towards the left
edge of the FoV, but the target attractor becomes
stronger for a target at the edge of the FoV. There-
fore, from second 5 to 6, the robot will change it’s
turn from right to left even though the obstacle is
still in the FoV, as the DVS image at position 2
shows.

The main limitation we could found in our ex-
periments is the position of the obstacle. If this
position is only slightly changed, as shown in figure
14, the robot will simply loose the target because
he has to turn away from the obstacle. Here we also
find the limitations of our current memory setup.
Even thought the target representation on ROLLS

has a sticky behavior, the robot will simply find
a new target as the target is only defined as the
maximum global DVS input column. We will dis-
cuss this topic further in 4.

In addition to the presented experiments we did
successfully test target acquisition in the office en-
vironment. However, this was only successful with
less clutttered background scenes.
Furthermore, we did conduct tests where the tar-
get was not stable but moved around, remote con-
trolled by the experimenters. We did in general find
that moving targets were followed as long as they
did not move much faster than the following robot
and that they did not move outside of the FoV.

We could show here a working combination of
target acquisition and obstacle avoidance where the
ultimate decision of which to follow is taken by the
mutual WTA dynamic between the ‘turn-left’ and
‘turn-right’ populations, which get input from an
attractor-repeller-system.
Limitations of this scheme are the general robot
speed, which has to be slow enough to detect the

15

Figure 14: The robot, trying to approach the tar-
get, avoids an obstacle and loses the target out of
sight.

target, and the awareness of a shift in the relative
target position when turning away from an obsta-
cle.

4 Discussion

In this semester project we have demonstrated that
the neuromorphic hardware can be used to imple-
ment both obstacle avoidance and target acquisi-
tion with only 256 neurons. The robot is able to
navigate cluttered environments, avoid moving ob-
stacles and follow a target at the same time – and
all decisions are made on the neuromorphic hard-
ware.

However, it needs to be noted that the combina-
tion of obstacle avoidance and target acquisition is
difficult. Combining these two, the limited num-
ber of weights becomes a great problem since it is
nearly impossible to tune both parts to the opti-
mum. It was found unavoidable to use the same
weights in different parts of the architecture, lead-
ing to complex interferences in the tuning process.

There are more limitations to the system: In the
latest stage of our architecture, we make use of all
available neurons, making it impossible to extend
our work with the current hardware.

While our experiments show that the processing
of raw DVS events is an efficient and robust method
for obstacle avoidance, it is a very basic method
and could be extended. The experiments for target

acquisition also clearly showed limits of this low-
level processing.

For obstacle avoidance, we did show that differ-
ent colors of the same shaped object produce dif-
ferently strong reactions, sometimes even reactions
that are not strong enough, as seen in 3.2. Other
problems are caused by very big, low contrast ob-
jects, of which the robot could detect the borders
but mistakenly tries to pass in between the borders,
through the object.5 This is especially a problem
with walls.

While we are filtering in the target layer, we
still only take the most salient input as our tar-
get, which can lead to false identification if the real
target is out of sight and the next strongest input
is mistaken as the target.
This was also found to be one of the main problems
in our approaches to improve the target acquisition
(see 2.2.5). As a results, none of the ideas could be
fully realized on ROLLS.

Possible solutions and extensions to the visual
processing or memory would require more neurons
(and/or weights). With more neurons and weights
available, arbitrary many processing steps could
easily be added to the architecture to refine its be-
havior, e.g. not connecting the obstacle popula-
tion directly to the command populations, but to
a series of processing layers, which are then finally
connected to the command populations.

This visual processing could also use patterns like
optical flow to extract more data (i.e. distance,
motion, direction of objects) from the DVS events
to further improve the avoidance decisions, e.g. if
an object is moving out of the way, less avoidance is
necessary, and most importantly making it possible
to filter our far-distance background to detect the
target.

Working with a neuromorphic processor has sev-
eral limitations compared to a simulation. Not only
are far less neurons available, we had to work every-
where with populations of neurons as single neurons
vary too much from each other to encode or process
information reliably. Since we introduced a way to
compensate the limited number of weights in the
ROLLS by varying the number of synaptic connec-
tions between populations of multiple neurons, we

5Low texture objects are a well known problem in com-
puter vision, leading for example to the crash of a TESLA
car into a white truck that was not detected in front of a
cloudy sky.

16

consider the number of neurons a harder limitation
than the number of weights.

However, the number of neurons can not only
be increased by building bigger chips, but by con-
necting multiple chips together. With a look at the
architecture described here it is actually possible to
pipeline information between different stages. The
neural populations for obstacle position and target
position do not influence each other at all, they
only have inputs from the IMU and the DVS and
output to the command populations. Therefore,
future work could have a look at stacking multiple
ROLLS chips together in order to make space for
extensions of the architecture. The cxQuad archi-
tecture by INI [3] might be interesting as well, since
it features a much greater number of neurons and
allows exactly this kind of scalability.

The PushBot platform has shown to be easily
usable and well suited for our task, but lacks the
possibility to be directly connected to the neuro-
morphic processor. We have bridged this gap in
software on parallella (as described in 2.2.1), but
for future implementations it might be interesting
to have a hardware implementation that could be
driven by spikes, ideally with continuous decay and
not sampled every n ms to provide an even more
direct influence of the command populations on the
robot.
Also, ‘real-world’ tests would benefit from a plat-
form that is able to carry the whole setup, making
the Wi-Fi network handling obsolete.

Finally, we did not make any use of the learning
capabilities of ROLLS in this project. All weights
of the network are set by hand in an often time
consuming and error prone process. We are able
to show that the architecture works, but if the net-
work could learn, the process of tuning the network
might be considerably simplified and the perfor-
mance improved.

All in all our proof of concept is especially inter-
esting since we present a simple yet flexible archi-
tecture that can easily be extended with additional
functionality. Together with our improvements to
the library (2.3) we hope to enable future work in
this direction.

5 Publications

A first stage of this work was submitted to ‘Fron-
tiers in Neuroscience’ [5] and is currently beeing
reviewed.
Another paper on basis of this project was submit-
ted to the IEEE International Symposium on Cir-
cuits & Systems (ISCAS) [6] and is also currently
under review.

6 Acknowledgments

Our gratitude and appreciation go to Yulia San-
damirskaya and Moritz Milde who have supported
our project with tremendous amounts of patience,
creativity, overtime and candy bars.

Special thanks go to Tobi Delbruck for making
this work possible at all.

We thank Giacomo Indiveri for many useful ideas
and literature suggestions.

For the NCSRobotLib we would like to thank
Julien Martell and Aleksandar Kodzhabashev and
all the other people involved.

We thank Jörg Conradt and his team for the
creation of the PushBot platform and Michel Fris-
ing for first experiments combining the PushBot
and ROLLS as these works were the basis for our
project.

References

[1] Valentino Braitenberg. Vehicles: Experiments
in synthetic psychology. MIT press, 1986.

[2] Dan FM Goodman and Romain Brette. The
brian simulator. Frontiers in neuroscience,
3:26, 2009.

[3] Giacomo Indiveri, Federico Corradi, and Ning
Qiao. Neuromorphic architectures for spiking
deep neural networks. In 2015 IEEE Interna-
tional Electron Devices Meeting (IEDM), pages
4–2. IEEE, 2015.

[4] Patrick Lichtsteiner, Christoph Posch, and Tobi
Delbruck. A 128× 128 120 db 15 µs latency
asynchronous temporal contrast vision sensor.
IEEE journal of solid-state circuits, 43(2):566–
576, 2008.

17

[5] Moritz B. Milde, Hermann Blum, Alexander Di-
etmüller, Dora Sumislawska, Jörg Conradt, Gi-
acomo Indiveri, and Yulia Sandamirskaya. Ob-
stacle avoidance and target acquisition for robot
navigation using a mixed signal analog/digital
neuromorphic processing system. Frontiers in
neuroscience, 2017.

[6] Moritz B. Milde, Alexander Dietmüller, Her-
mann Blum, Giacomo Indiveri, and Yulia San-
damirskaya. Obstacle avoidance and target ac-
quisition in mobile robots equipped with neuro-
morphic sensory-processing systems. In IEEE
International Symposium on Circuits & Sys-
tems, 2017.

[7] Pushbot. Pushbot robotic platform. http://

inilabs.com/products/pushbot/, 2017. Ac-
cessed: 2017-01-09.

[8] Ning Qiao, Hesham Mostafa, Federico Corradi,
Marc Osswald, Fabio Stefanini, Dora Sumis-
lawska, and Giacomo Indiveri. A reconfigurable
on-line learning spiking neuromorphic proces-
sor comprising 256 neurons and 128k synapses.
Frontiers in neuroscience, 9:141, 2015.

[9] Sebastian Schneegans and Gregor Schöner. A
neural mechanism for coordinate transforma-
tion predicts pre-saccadic remapping. Biological
cybernetics, 106(2):89–109, 2012.

18

