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Abstract

Depth perception is the problem of determining the distance of objects
from the observer. Useful sample applications of depth data are 3D
reconstruction and robotic navigation. Depth is challenging to acquire
because it cannot be measured directly, unlike for example light intensity.
Often, the desired output of such a system is a depth map: a digital im-
age where each pixel encodes a distance. This can be used as a basis for
further processing. Different approaches for measuring and reconstruct-
ing depth include include multi-vision, motion parallax, structured light,
and time of flight.

This project considers depth from focus. A stack of images at different
focus settings are taken of a scene. By determining at which setting a
pixel was maximally in focus, depth can be reconstructed. These cal-
culations are directly done on a neuromorphic image processor which
contains a small mixed-signal computer directly in each pixel. Only
the reconstructed depth data is transferred for further processing. Pre-
processing and reducing data directly at the source in a highly parallel
manner makes the system energy efficient and fast.

This setup can only reconstruct data where there is texture or edges in the
scene. We add an algorithmic post processing step step for inpainting and
noise removal. The class of algorithms explored are highly parallelizable
and thus also interesting for implementation on neuromorphic hardware.

Our system is capable of delivering sparse depth frames of 32 levels at 25
fps, or 15 fps with 64 levels. Implementation on a GPU allows up to 36
fps for the algorithmic post processing step on a recent consumer laptop,
and 5 fps on an embedded computing platform.
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Chapter 1

Introduction

Depth perception is a classical problem in computer vision and has important
applications in robotics. It is useful for orientation in a 3D space and allows
robots to map, plan, navigate and react to their surroundings. Whilst humans
largely depend on stereo vision, a multitude of other cues can be found in
nature and technology. They can be classified into various categories such as
binocular vision, monocular vision and non-visual. A non-exhaustive list is
given in the following:

Stereo vision: Stereo vision uses two 2D images of a scene captured from
two different poses. By estimating disparity, e.g. from certain key points, it is
possible to reconstruct a 3D image through triangulation from its projections
to 2D ("Stereopsis", [1]). The main disadvantage is the necessity of at least
two visual sensors or eyes separated by some distance, or the need of motion
between two frame captures, known as Motion Parallax.

Motion parallax: When an observer moves in a scene, the relative motion
of objects in his view differs depending on distance to the observer ("Motion
parallax", [2, p. 419]): Objects farther away will move slower. This can be
exploited to estimate their distance to the observer. Similar to stereo vision,
multiple images of the same scene are needed. It is difficult to implement in a
non-static scene and also requires the observer to move.

Structured light: In this approach, a known pattern of light is projected
onto the scene from the observer. By analyzing the deformation of the pattern
from observer perspective, depth structure can be inferred. A popularly known
example using this technique is the first version of the Microsoft Kinect Sensor
[3]. The obvious disadvantage of this approach is the need for a light projecting
appliance. Further problems lie in the interference with other light sources.

Time of flight: The most direct approach for measuring distance. Light
(LIDAR), sound (SONAR) or radio waves (RADAR) are emitted. The time
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1. Introduction

until a reflected signal can be detected ins then measured. Additional cues
like frequency shifts caused by the Doppler effect can be picked up. Systems
of this kind can deliver high accuracy. Some advantages and disadvantages
are shared with the structured light approach, like independence from lighting
conditions and sensibility to inference.

Depth from focus: By varying the focal length and determining which
objects are in focus, depth can be reconstructed. Similar to stereo vision and
motion parallax, an important restrictions is that this method only works on
textured surfaces. There is a physical limitation for the maximum measurable
distance which depends on the optical system ("Hyperfocal distance").

1.1 Problem Statement

An important issue in visual processing is the limited bandwidth between the
sensors and processing. If fine grained computations are done directly on
the optical sensor, high level computations can still occur externally, but on
reduced data. This overcomes the bottleneck. For example, the theoretical
data rate for 32 depth levels at 25 fps and 256×256 pixels resolution as currently
achieved by our system is 8.2 Mbit/s, versus 419.4 Mbit/s for transferring the
stack of 32 greyscale 8 bit images per frame for external processing.

The goal of this project is to construct a system for real-time depth from focus
perception, using a focus tunable lens [4] placed in front of the SCAMP-5
programmable vision chip [5]. The lens contains a liquid and can be focused
very fast using an electric current (hundreds of steps a second). The SCAMP-5
chip is a neuromorphic vision sensor, which includes a small mixed-signal ALU
with digital and analog registers in each pixel. A single control unit dispatches
instructions to the pixel ALUs in parallel, implementing SIMD (single instruc-
tion multiple data) processing per pixel. Also, communication mechanisms for
signal propagation between neighboring pixels are included. This allows low
latency, low power implementations of highly parallel vision algorithms. The
simple ALU and limited memory require thinking about adequate algorithm
design.

The described lens and vision chip in combination allow for fast depth recon-
struction. As much as possible of the processing should be done directly on
the chip for low latency and reduced bandwidth between the chip and the
data consumer. For computational tasks which are not feasible on SCAMP-5,
implementation on a GPU (Graphical Processing Unit) should be considered
for real time processing speed.
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1.2. Starting point

1.2 Starting point
At INI, a first version of the described lens/sensor system has been developed
and implemented on SCAMP-5. The working principle is described in the
following.

1. Sweep the optical power of the lens in a given range.

2. During the sweep, capture as many image frames as points of depth
resolution are desired.

3. By analyzing focus in each frame and associating them to their depth,
construct a sparse depth map. This means the map only contains data
where there are edges and textures in the field of view.

Because the depth map is sparse and the depth levels are discrete, an additional
algorithmic step for inpainting and densification can be useful. This enables
the system to deliver dense depth maps, comparable to e.g. a Kinect. A
mathematical model has already been developed, and implemented using a
commercial Solver on an external computer. It is however not yet directly
integrated with the SCAMP-5 system and has a run time in the order of tens
of seconds per frame.

1.3 Objective and Outline
This will serve as a base for this thesis. The existing system should be improved
and reach real-time processing capabilities.

In particular, parallelizable optimization models for densification, inpainting
and denoising have to be found. This will allow for faster performance and
better results.

The system should also be able to run on a mobile computing platform like the
Parallela Board (https://www.parallella.org/board/) allowing placement
on a robot. This will pose the challenge of reduced available computing power
as compared to a Laptop or Desktop computer.

From a more general point of view, this project should explore a class of visual
algorithms that can benefit from using mostly local, parallel updates. This is
suitable for neuromorphic hardware, which generally keeps state distributed
locally among the processing units, and allows for highly parallel computations.

1.4 Definitions
This section defines and explains certain terms used throughout this report.
Some of those terms can have different meanings in different contexts.

3
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1. Introduction

Depth frame A single image frame of depth values.

Focus frame An image taken at a certain focus value. N focus-frames at
different focus levels are required for constructing a single depth-frame.

Inpainting In an (digital) image, reconstructing missing areas from the data
in known areas. In our case, this means inferring depth data for parts of
the image which were not measurable because of a lack of texture.

Densification Given a depth image of discrete levels, infer depth for pixels
on a continuous scale (e.g. by smoothing).

Denoising Removing noise from measurements, for example by averaging
over multiple data points.
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Chapter 2

Optical Model

This chapter introduces the basic model required to understand the depth from
focus approach. It also contains a description of our system and its operation.

2.1 Focus model
Most of the discussion and calculations mentioned in this section have already
been done in [6]. We reproduce them here as a convenience to the reader. Note
that the optical model in this chapter is simplified, and detailed modeling and
simulation would be required to calibrate the system in detail. For example,
we neglect lens distortion effects.

𝑑"
#$% 𝑑"&'$%𝑑" 𝑑"

#$% 𝑑(&'$%𝑑(

Light

Optical	axis

Lens,	
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Image
Plane

𝐶

Object
Plane

Figure 2.1: Depth of field effect. This illustration shows the relation of aperture
diameter A, DoF and circle of confusion C . Graphic by J. Martel.

Our model is set up around the optical axis. Light rays pass through the system
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2. Optical Model

parallel to or with small deviations from this axis. Parallel rays, for example
sent from an object in infinite distance, will converge on a point behind the
lens in distance f , called the focal length. Points on the object plane, a plane
perpendicular to the optical axis situated in distance do before the lens, will
form an image on the image plane in distance di behind the lens as described
by

1

do
+ 1

di
= 1

f
(2.1)

where δ = 1/ f is called the optical power of the lens. Higher optical power
means that the rays get diverted more strongly by the lens, and the image
plane moves closer to the lens.

If an optical sensor is placed behind the lens with distance di perpendicular
to the optical axis (that is, on the image plane), the system is in focus for an
object point in front of the lens with distance do . When the object distance do

changes, the image plane will translate according to Equation 2.1. If the sensor
distance remains constant at the same time, this will cause the projection on
the sensor plane to appear blurred.

For a known f and di , the distance of an object do can be determined according
to Equation 2.1 if it appears in focus. To be able to detect objects at different
distances, one of the three variables in the equation needs to be varied. Shifting
do means moving the optical system in the scene along the optical axis, whereas
changing di means moving the sensor plane. We are interested in the third
possibility: changing the optical power δ and thus the focal length f = 1/δ of
the optical system.

So far, we implicitly assumed an infinite aperture and infinite resolution of
our imaging sensor. Real systems however have finite aperture, and discrete
sensor cell (pixel) size. We thus introduce the aperture diameter A, and the
pixel diameter as C . C is also named circle of confusion, as it is not possible
to determine resolution below this diameter. Given those physical limitations,
points in a range [d far

o ,dnear
o ] will all appear in focus because of the maximal

resolution given by C . The distances are given by

d near/far
o = do A f 2

A f 2 ± f C (do − f )
(2.2)

and the length of this range, called depth of field (DoF), is given by

DoF = 2doC A f (do − f )

A2 f 2 − (do − f )2C 2 . (2.3)
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2.2. Acquiring Depth Maps

2.2 Acquiring Depth Maps

The tunable lens optical power is continuously swept up and down with a fre-
quency v , where the sweeps are linear. The current as well as the optical power
thus change over time in the form of a triangular wave, as shown in Figure 2.2.
For each depth frame, we sweep the optical power from the maximum to the
minimum in the first half-wave. The object plane thus moves from close to
the sensor to further away. To acquire a depth map of N levels, we take N
focus frames during this half-wave ("down-sweep"). For each focus frame t , a
Laplacian of Gaussian (LoG) filter is run. During the N iterations, we then
store for each pixel the t at which the LoG result was maximized. This is the
index of the depth frame at which the pixel was maximally in focus. After
each LoG computation, we wait for a fixed delay ∆T so that N iterations fit
into a down-sweep evenly distributed.

During the up-sweep which resets the optical system to the state at the be-
ginning of a new depth frame iteration, we transfer the sparse depth map
computed in this way on SCAMP-5 to the embedded computing platform via
USB. No processing work is done on the image sensor during that time.

Proc.	t-1 Proc.	t

Image	t Image	t+1

One	depth	frame

“down	sweep” “up	sweep”
time

Iter.	t-1 Iter.	t

Programmable	delay	ΔT

Optical	power	δ(t)
Lens	trigger

Processing,	N	
steps

Digital	output

digital	frame	output

Time:	t

Figure 2.2: Acquiring depth frames. Graphic by J. Martel.

2.3 System description

The assembled system is shown in Figure 2.3. A more detailed description is
given in the following:

1. The object plane is a plane perpendicular to the optical axis of the system
(which is shown as a red arrow).

2. By changing the optical power of the tunable lens, the distance of the
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2. Optical Model
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Figure 2.3: Schema of the assembled system. (1) object plane, (2) focus tun-
able lens, (3) fixed back lens, (4) distance ring, (5) SCAMP-5 sensor and
case, where the object plane is projected to the image place, (6) lens current
driver, (7) embedded computer running Windows 10, (8) USB-Cable between
SCAMP-5 and computer, (9) lens cable, (10) frame trigger cable.

object plane to the sensor and image plane can be changed. The opti-
cal power is tunable by changing an electric current, and can thus be
controlled from a computer.

3. A fixed lens is needed to focus light onto the small sensor surface. It
also serves to hand-tune the base optical power of the whole system, and
allows to change the aperture size.

4. The distance ring ensures correct distance to put the SCAMP-5 sensor
into the focal plane.

5. A case contains and protects the optical sensor itself as well as the elec-
tronics needed to support it.

6. The lens current driver contains a high precision controllable current
source and can be operated via a serial connection from the computer.
It also emits a lens trigger signal once per depth-frame at the start of
the optical power down-sweep, to signal the SCAMP-5 sensor to start
collecting focus-frames. The current can be set from −191 mA to 191 mA,
which maps almost linearly to an optical power of −2 dpt to 2.3 dpt [7].
Higher (positive) current means higher optical power, thus bringing ob-
jects closer to the sensor in focus. By changing lower current limit, the
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2.4. Physical Limitations and Tradeoffs

Figure 2.4: Photo of the system setup. The grey box in the center of the image
is the case containing the imaging sensor. Screwed onto it are the fixed and
the tunable lens. Laying on the table bottom left in the picture is the lens
driver. The laptop to the right replaces the embedded computing system in
this experimental setup. The Oscilloscope is needed to synchronize the delay
between frame captures with the frame trigger. Photo by J. Martel.

far distance limit of the system can be changed, and vice versa for the
upper current limit.

7. An embedded Windows computer (LattePanda) with a power consump-
tion of approximately 10 W controls the lens driver and downloads the
sparse focus data from SCAMP-5. It then runs the inpainting and den-
sification algorithm on its builtin GPU via OpenCL.

8. Through the USB sensor cable, firmware and instructions are uploaded
to the optical sensor and its controlling FPGA, and image data is down-
loaded to the embedded platform.

9. The lens cable connects the lens to the lens current driver.

10. The lens trigger cable brings the trigger signal from the lens driver to
SCAMP-5.

2.4 Physical Limitations and Tradeoffs
Understanding a systems underlying physical limitations is necessary to effec-
tively modeling it, and knowing its strengths and weaknesses. In the following,
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2. Optical Model

we discuss limiting properties of our system and their effects.

2.4.1 Depth of Field, Hyperfocal Distance
This sections presents two important limitations visible in ??.

First, DoF will increase as do increases. This means that we have higher depth
resolution at close distances, and that we cannot distinguish depth anymore
from a certain distance. This effect is known in photography: when a photo
lens is tuned to "infinity", this means f = di and all objects past the hyperfocal
distance will appear in focus.

The second effect is that we cannot distinguish the depth distance of pixels
in the same depth of field interval. We can determine the do around which
the DoF interval is placed, but not where in this range a pixel actually lies.
Pixels assigned to the same level could be located anywhere in that range. As
the aperture diameter A gets bigger, DoF gets smaller and thus our possible
resolution bigger.

2.4.2 Exposure Time
To gather v depth frames at N levels per second, the system has to record
N f = v N frames per second in total. Because only half of T = 1

v is spent
recording, the exposure time per focus frame is at most q

2v N . For N = 32 at
25 fps, this gives 0.625 m.

Because of the complex processing circuitry on each pixel, the SCAMP-5 sensor
has a very low fill factor. Each pixel has a surface area of 32.26µm×32.26µm,
of which only approximately 6% are dedicated to the photo diode [8]. Typical
CMOS sensors used in modern digital cameras reach fill factors in the range of
30% to 90% [9, p. 383]. This means that our system might be limited by light
sensitivity in low light scenes, making collection of depth frames at high frame
count impossible. On the other hand, the system can be tuned to work at very
brightly illuminated scenes. Light sources like the sun, which can be a source
of interference for other depth measurement methods, are only benefiting the
performance of our system.

Likewise to the depth of field effect, a bigger aperture diameter is beneficial to
our model in terms of exposure time. Exposure time required will scale with
1/A2, because the bigger aperture area will allow through more light.

2.4.3 Texture
Recovering depth from focus only works where there is texture: an evenly
illuminated plain white wall will not change its appearance out of focus. Here,
texture can mean edges between different objects, actual texture on single
objects, or light and shadow patterns projected on a scene.
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2.4. Physical Limitations and Tradeoffs

This is a problem because we consequently can only get sparse data. Is is
inherent to all methods which exclusively use optical cues without actively
projecting texture onto the scene. Contrary, the structured light method is not
affected by this problem, neither are methods which directly measure distances
using signal propagation times (Radar, Lidar).

The depth of "plain objects" can however be inferred from contrast on their
edges. It can be assumed that most objects without texture are also flat. Most
untextured objects made by humans are flat (walls, tabletops, floors, ...), and
there is almost no object without texture in nature. Inferring depth for the
unknown parts of the image is described in detail in the next chapter.

Another approach to reduce this problem would be to simply add texture into
the scene. This could for example be done by projecting a light pattern into
the scene, similar to a structured light system. We however do not have to
know the light pattern, and any pattern containing sharp edges will help.
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Chapter 3

Models for Inpainting, Densification
and Denoising

In this chapter, we discuss how sparse depth data as provided by our system
can be enhanced by inpainting, densification and denoising. We will present a
discrete model and the reasoning behind it. This model is then reformulated
in the variational framework, which will allow the application of certain fast
solution algorithms. Those algorithms are presented towards the end of this
chapter. Implementation and results for all the models are presented in the
next chapter.

(a) Depth data (b) Color photo

Figure 3.1: Sample of retrieved sparse data. Red means closer, dark blue more
distant. In the first sub figure, the depth map is shown. In the second image,
we show the scene from the same point of view using a conventional camera.

13



3. Models for Inpainting, Densification and Denoising

3.1 Problem
As already described in section 2.4, a depth from focus system typically collects
data only where there is texture, as visible in Figure 3.1. Texture means
spatial variation in the image intensity, for example object edges or patterns
on individual objects. Additionally, we can only get limited discrete depth
levels because of the depth of field effect. The depth of field effect causes
all objects in a certain distance range to appear in focus, as opposed to just
objects in a single exact distance plane. It is caused by the finite aperture of
our systems, as explained in chapter 2. Our system relies on having a depth of
field as narrow as possible, however we cannot resolve the exact depth within
the depth of field. Finally, we also get outlier measurements (noise) as visible
for example on the cap of the pen in the sample image.

We present a mathematical model that attempts at inpainting, denoising and
densifying the depth data:

1. Continuous depth values should be found from the measured discrete
levels ("Densification").

2. Find values for the unknown pixels in the depth map ("Inpainting").

3. Remove outlier measurements ("Denoising").

Let the image domain Ω⊂R2 be an open set. A continuous domain, continuous
value greyscale image or depth map is a function f :Ω 7−→ R. In the following,
the symbols f and g will always denote functions of this type.

To define discrete domain, continuous value images (corresponding to a digital
image of floating point valued pixels), let

Ω1 =
{
(i , j ) : 1 ≤ i ≤ m,1 ≤ j ≤ n

}
(3.1)

be the regular Cartesian grid of size m ×n, with (i , j ) representing the pixel
indices. Furthermore, let X = Rm×n be a finite dimensional vector space with
standard scalar product

〈u, v〉 =∑
i , j

ui , j vi , j ∀u, v ∈ X (3.2)

and induced norm

‖u‖ =
√
〈u,u〉 ∀u ∈ X . (3.3)

Unless otherwise mentioned, u, v ∈ X will always hold in the following.

Finally, we define the vector space Y = X ×X which we will need for definition
of the differential operator.

14



3.2. Discrete Model

3.2 Discrete Model
This model was developed at INI in together with J. Martel. It tries to formu-
late constrains which embed our understanding on the physical properties and
constraints of the system.

We assume q ∈ {�,1, ..., N }n×m to be a n ×m pixels sparse depth map of N
depth levels retrieved as described in chapter 2. Its elements are qk with
indices k = (i , j ) ∈ Ω1, and � indicates a missing data element. u as defined
before denotes the depth map we want to reconstruct. Note that q lives in the
same domain as u, but only takes discrete values.

We find û by solving

û = argmin
uk ,ξ+,−

k ,χ+,−
k,l

∑
k

wk
(
ξ+k +ξ−k

)+λ∑
k,l
χ+k,l +χ−k,l (3.4)

under the constraints

uk +ξ+k −ξ−k ≥ qk −β
uk +ξ+k −ξ−k ≤ qk +β
ξ+k ≥ 0

ξ−k ≥ 0


∀k ∈Ω1 : qk 6=� (3.5)

uk +χ+k,l −χ−k,l ≥ ul −α
uk +χ+k,l −χ−k,l ≤ ul +α
χ+k,l ≥ 0

χ−k,l ≥ 0


∀k, l : uk ,ul neighboring pixels (3.6)

where ξ+k ,ξ−k are slack variables for deviations of u from the data q and χ+k,l ,χ−k,l
for fronto parallel deviations between neighboring pixels. The cost functions
were chosen to be similar to L1 regularization because this will rejects Laplacian
"shot noise", as compared to L2 regularization which corresponds to a Gaussian
noise model. The model uses the following parameters:

α allowing small discontinuities between neighboring uk without penal-
ization,

β allowing placement of uk values in a depth of field range without
penalization, and

wk a data parameter indicating a certain ratio of available data in the
neighborhood of qk .
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3. Models for Inpainting, Densification and Denoising

𝛼
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Loss:
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Figure 3.2: This figure illustrates the intuition behind the double hinge loss
functions, and their decomposition into positive and negative slack variables.
Deviations smaller than β and α do not get punished. In the data prior,
deviations uk > qk +β are contained in ξ−k , analog for negative deviations and
the model term. is Graphic by J. Martel.

This is a convex optimization problem. The decomposed version of the problem
presented above using slack variables gives us a linear objective. This makes
it solvable by the dual simplex algorithm, e.g. using a commercial solver like
Gurobi [10]. The dual simplex algorithm solves linear optimization problems
by following the edges of the polyhedron defined by the constraints of the
problem, searching for a minimal solution.

The original problem features for both the data prior and the model prior a loss
function we call "double hinge loss". This name is chosen because the function
looks like the hinge loss function common in machine learning mirrored at the
u = 0 axis, as Figure 3.2 shows. The two loss functions are defined as:

C1(uk , qk ;α) = max
{ |uk −qk |−α,0

}
(3.7)

and

C2(uk ,ul ;β) = max
{ |uk −ul |−β,0

}
. (3.8)

For understanding the model, those formulations are better suited than the
decomposed version.

An illustration of the model is given in Figure 3.3. It shows the grid of latent
uk values and two measured qk levels. Results for this model will be shown in
chapter 4.
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3.3. Variational Model

qk

qk

uk

uk
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Figure 3.3: Illustration of the developed model. uk are the latent piecewise
continuous depth values, qk sparse measured discrete depth levels.

3.3 Variational Model
While the discrete view on the problem is a good first approach to our prob-
lem, it is also somewhat limited. We will take a step back and change into
the continuous world. This will allow us to formulate constraints at a more
generalized and higher level, and leverage tools of continuous optimization and
PDE solving.

Variational methods employ a continuous view: Images are viewed as functions,
and the solution to a variational problem formulation is the minimizer to some
energy functional. An extensive introduction is given in [11]. The prototypical
application is image reconstruction using the total variation regularizer as first
proposed by Rudin, Osher and Fatemi [12]. It is commonly named the ROF
model after its authors, and is formulated as

f̂ = argmin
f

∫
Ω
‖∇ f ‖1 d x +L( f ; g ) (3.9)

where

‖∇ f ‖1 =
√

f 2
x + f 2

y (3.10)

is the discretized total variation norm and

L( f ; g ) = λ

2

∫
Ω

( f − g )2 d x (3.11)
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a data term loss function tying the solution to measured data g . The norm
allows sharp discontinuities in the image, whilst discouraging high frequency
changes (noise). Note that this problem is convex in the variable f . This
guarantees a global optimum, and allows using the tools of convex optimization.
Specifically, we will make use of the algorithms proposed in [13]. First however,
we adapt the ROF model to our problem.

We replace the quadratic data term by the double hinge loss C1( f , g ) from
Equation 3.7. As already mentioned in the section before, this is to model the
depth of field effect and Laplacian noise. To get inpainting, we introduce a
spatially varying λ(·) ("mask") which is λ0 where we have measured data and
zero otherwise.

Our problem is then

f̂ = argmin
f

∫
Ω
‖∇ f ‖1d x +

∫
Ω

λ

2
max

{ | f − g |−α,0
}

d x. (3.12)

Note that the function arguments x (location) have been omitted for f , g and λ.
As compared to the discrete model, ‖∇·‖1 now takes the role of Equation 3.8.

We will also consider two variants of the problem with modified data loss
functions. First, the original ROF problem extended by inpainting

f̂ = argmin
f

∫
Ω
‖∇ f ‖1 +

λ

2
( f − g )2 d x (3.13)

and second, with L1 loss function:

f̂ = argmin
f

∫
Ω
‖∇ f ‖1 +

λ

2
| f − g | d x. (3.14)

3.4 Algorithms and Hyperparameters
Before introducing the algorithmic framework, some definitions are needed.
They are reproduced from [14] and [13]. We define a function F : X → {−∞,+∞}
for the following definitions.

Definition 3.1 The domain of a function F is

domF = {
u ∈ X : F (u) <+∞}

. (3.15)

Definition 3.2 The epigraph of a function F is

epiF = {
(u, v) ∈ X ×X : F (u) ≤ v

}
. (3.16)
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3.4. Algorithms and Hyperparameters

In an intuitive way, it is the area above the function graph for the plot of a
one-dimensional real function taking one argument.

Definition 3.3 A function is closed proper convex if its epigraph is a nonempty
closed convex set.

Definition 3.4 The proximal operator proxτF : X → X with parameter τ of a
function F is

proxτF (u) = argmin
v

F (v)+ 1

2τ
‖v −u‖2

2 (3.17)

where τ> 0.

Definition 3.5 The convex conjugate F∗ of a function F is

F∗(u) = max
v∈X

〈u, v〉−F (v) ∀u ∈ X (3.18)

where 〈u, v〉 is a bilinear form which happens to be the inner product in our
case.

Definition 3.6 Let K : X → Y be a continuous linear operator. The adjoint
operator K ∗ : Y → X is then given as the continuous linear operator fulfilling

〈K x, y〉X = 〈x,K ∗y〉Y ∀x ∈ X , y ∈ Y . (3.19)

With those definitions, we can now introduce the general problem framework
for the algorithms from [13].

Consider X ,Y as defined in section 3.1. Let K : X → Y be a continuous linear
operator with norm

‖K ‖ = max
{‖K x‖ : x ∈ X and ‖x‖ ≤ 1

}
. (3.20)

The optimization problem is

x̂ = argmin
x∈X

F (K x)+G(x) (3.21)

with G : X → [0,+∞] and F : Y → [0,+∞] "simple" functions, where simple
means that proxτG and proxσF are easily computable (ideally by a closed form
solution).

The algorithms will make use of the proximal forms proxτG and proxσF , as well
as the adjoint operator K ∗.
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3. Models for Inpainting, Densification and Denoising

Algorithm 1 Algorithm 1
1: . (τ,σ) > 0,θ ∈ [0,1] are hyperparameters
2: . (x1, y1) ∈ X ×Y initial fields
3: procedure Algorithm1(τ,σ,θ, x1, y1)
4: x̄1 ← x1

5: for n ← 1, niter do
6: yn+1 ← proxσF∗(yn +σK x̄n)
7: xn+1 ← proxτG (xn −τK ∗yn+1)
8: x̄n+1 ← xn+1 +θ(xn+1 −xn)

9: return xn+1

3.4.1 Algorithms

Algorithm 1 has been shown to have 1/N convergence rate in [13].

Definition 3.7 The modulus of convexity γ of a function F (u) is

γF (t ) = inf

{
∆= F (u)+F (v)

2
−F

(u + v

2

)
: ‖u − v‖ = t , u, v ∈ domF

}
. (3.22)

As shown in Figure 3.4, the modulus of convexity is a measure for the convexity
of a function, expressing the "minimum curvedness" of the function on all
intervals of length t .

Definition 3.8 A function F is uniformly convex (u.c.) if

γF (u) > 0 ∀u > 0. (3.23)

For example, the function F (x) = λ
2 x2 is u.c. with modulus λ.

Algorithm 2 extends Algorithm 1 for the case that G or F∗ is u.c. with modulus
γ, achieving 1/N 2 convergence.

3.4.2 Casting into the Framework

The discrete versions of Equation 3.12, 3.13 and 3.14 are

û = argmin
u

‖∇u‖1 +
∑
i , j

λi , j

2
max

{ |ui , j − vi , j |−α,0
}

(3.24)

û = argmin
u

‖∇u‖1 +
∑
i , j

λi , j

2
(ui , j − vi , j )2 (3.25)
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A primal-dual algorithm
R x
0

R x
0 D. Cremers, B. Goldlücke, T. Pock

Uniform convexity
R x

0
ECCV 2010 Tutorial
Variational Methods in Computer Vision

Given a function f (x) the modulus of convexity � is defined through

�f (t) = inf
⇢

� =
f (x) + f (y)

2
� f (

x + y
2

) : kx � yk = t , x , y 2 dom f
�

f (y)

�

t/2

t

f (x)
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2
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• A function f (x) is said to be u.c. if �f (t) > 0 for all t > 0
• Additionally f (x) has a modulus of convexity of power type p if

there exists � > 0 so that �f (t) � �tp for all t > 0
• If f (x) u.c. with modulus �, then f ⇤(x⇤) has 1/�-Lipschitz

continuous gradient
• Example: The function �

2 kxk
2 is u.c. with modulus �
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Figure 3.4: Modulus of convexity illustrated for a function f (x). Graphic taken
from [15].

Algorithm 2 Algorithm 2

1: . (τ1,σ1) > 0with τ1σ1‖K ‖2 ≤ 1 are hyperparameters
2: . (x1, y1) ∈ X ×Y initial fields
3: procedure Algorithm2(τ1,σ1, x1, y1)
4: x̄1 ← x1

5: for n ← 1, niter do
6: yn+1 ← proxσn F∗(yn +σnK x̄n)
7: xn+1 ← proxτnG (xn −τnK ∗yn+1)
8: θn ← 1/

√
1+2γτn

9: τn+1 ← θnτn

10: σn+1 ←σn/θn

11: x̄n+1 ← xn+1 +θn(xn+1 −xn)

12: return xn+1

û = argmin
u

‖∇u‖1 +
∑
i , j

λi , j

2
|ui , j − vi , j | (3.26)

with

‖∇u‖1 =
∑
i , j

‖∇ui , j‖2. (3.27)

Inserting our problem into the aforementioned general framework Equation 3.21,
we have
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3. Models for Inpainting, Densification and Denoising

K =∇, F = ‖·‖1 (3.28)

and three variants of G for the double hinge, L2 and L1 loss functions

G1 =
∑
i , j

λi , j

2
max

{ |·i , j −qi , j |−α,0
}

(3.29)

G2 =
∑
i , j

λi , j

2
(·i , j −qi , j )2 (3.30)

G3 =
∑
i , j

λi , j

2
|ui , j −qi , j | (3.31)

where q is the measured depth level map. For implementation of both Algo-
rithm 1 and 2 we will need the adjoint operator K ∗ as well as the proximal
operators proxσF∗ and proxτG1,2,3

.

The adjoint operator to K =∇ is K ∗ =−di v .

The convex conjugate F∗ : Y → [0,+∞] can be found as

F∗(y) = δmaxi , j‖yi , j‖2≤1(y) (3.32)

meaning it is infinite if the euclidean norm of any element is greater than 1.
Its proximal operator is the point wise projection

proxσF∗(yi , j )i , j =
yi , j

max(1, |yi , j |)
. (3.33)

The proximal operators of G1,2,3 likewise decompose into element wise opera-
tions:

proxτG1
(ui , j )i , j =


ui , j if |ui , j −qi , j | ≤α
qi , j +αsign(u −q) else if |ui , j −qi , j | ≤α+ λτ

2

ui , j − λτ
2 sign(u −q) otherwise

(3.34)

proxτG2
(ui , j )i , j =

ui , j +τλqi , j

1+τλ (3.35)

proxτG3
(ui , j )i , j =


ui , j −τλi , j if ui , j −qi , j > τλi , j

ui , j +τλi , j if ui , j −qi , j <−τλi , j

qi , j if |ui , j −qi , j | ≤ τλi , j

(3.36)
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3.4.3 Discretizing the differential operators
For numerical implementation, we have to discretize the differential operator
∇ and its adjoint −div whilst keeping div∇=∆ (Laplace operator) sensible. To
keep the notation simple, we will use the notation

uC = ui , j , uE = ui+1, j , uS = ui , j+1, uW = ui−1, j , uS = i , j −1 (3.37)

as illustrated in Figure 3.5. We choose forward differentiation for ∇

∇uC =
(

uE −uC

uS −uC

)
(3.38)

and backward differentiation for div

divp = p(1)
E −p(1)

C +p(2)
S −p(2)

C (3.39)

which for ∆ gives

∆u = div∇u

= (uE −uC )C − (uE −uC )W + (uS −uC )C − (uS −uC )N

= uE +uS +uW +uN −4uC .

(3.40)

For the boundaries, we set ∇ui , j = 0 and divui , j = 0 everywhere their invocation
would access elements outside the N ×M grid.

u

uW uC

uS

uN

uE

Figure 3.5: North-East-South-West notation for discretization of differential
operators.
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Chapter 4

Implementation and Results

After having introduced the models, their implementation end evaluation is
described in this chapter. To explore and tune the models, we start with a
flexible, easily modifiable prototype. We then work our way towards a highly
optimized real-time implementation.

Unless stated otherwise, all performance measurements have been done on a
Macbook with a 2.3 GHz Intel i7-4850HQ quad core processor, 16 GiB memory,
and NVIDIA GeForce GT 750M dedicated graphics card.

The embedded computing platform "Lattepanda" features a 1.8 GHz Intel
Z8350 quad core processor, 4 GiB of memory and an Intel HD Graphics GPU
integrated on the CPU silicon. It runs Microsoft Windows 10. Note that
the energy-saving Intel Cherry Trail CPU architecture upon which the Lat-
tepanda platform is built delivers a lot less computing performance compared
to an i7 processor, despite having a similar clock rate and the same number of
cores. Because the software used to interface the SCAMP-5 sensor only runs
on Windows, a Windows embedded platform had to be chosen. An additional
criterion was the availability of a GPU core.

4.1 Discrete Model - Gurobi
Gurobi [10] is a commercial solver software package for convex optimization.
It allows a black-box approach: The problem is fed to the software, and it
then on its own chooses a method to solve the problem. The developer does
not have to care about how the solution is reached. This makes prototyping
and implementation very simple. The disadvantages are the dependency on
a commercial software package (which is however available free of charge for
academic purposes), and slow execution time compared to specialized imple-
mentations.

The discrete model described in section 3.2 can be directly input to Gurobi.
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4. Implementation and Results

Figure 4.1: The sample sparse depth level image used for the experiments
throughout this chapter.

Each measured depth level yields a constraint of form Equation 3.5. Every
element of the latent field (except for pixels on the western and southern image
border) yields two constraints of form Equation 3.6 each, for the connection
to its southern and western neighbor. Equation 3.4 is then set as objective.

To avoid unnecessary obstruction of the development and prototyping process,
this first implementation was not made capable of communicating with the
optical system and sensor directly. It takes pre-recorded depth level frames
as input. The open source computer vision and imaging library OpenCV [16]
is used for in- and output as well as for necessary pre- and post-editing steps.
C++ was chosen as programming language because both Gurobi and OpenCV
offer easy to use interfaces to it.

As expected, this implementation does not perform well in terms of execu-
tion time. Multiple seconds are needed for the processing of a single frame.
Gurobi chooses the dual simplex algorithm for optimization of this problem.
This algorithm does work, but does not exploit the structure of the problem
optimally.

Figure 4.2 shows the sample depth scene from Figure 4.1 inpainted with this
implementation.

4.2 Variational Model
To work towards real-time processing, we want to make use of the fast algo-
rithms presented in section 3.4. For this, we need the model reformulated in
the variational framework. A first implementation will show their usefulness
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Figure 4.2: Sample depth scene inpainted using the discrete model, solved with
Gurobi.

and allows tuning of parameters, without a focus on speed. A second, faster
implementation then makes use of the experience gained from the first.

Unless mentioned otherwise, the parameters shown in Table 4.6 and hyperpa-
rameters from Table 4.1 are used in the following.

4.2.1 Theano

Theano [17] was chosen as prototyping platform. In short, Theano is an opti-
mizing computation graph compiler: it allows to define a computation graph
through an API exposed in the Python programming language. The Theano
compiler can run various optimizations on this graph, and output and execute
code for conventional CPUs as well as Graphics Processing Units (GPU). Re-
sults are then delivered back through the Python interface. This approach
allows relatively high performance without the developer being required to
write low level programming code.

The double hinge loss (DHL), L2 and L1 versions of the model where all im-
plemented using both Algorithm 1 and 2. Note that only G2 (L2) is uniformly
convex. The other two cost functions are non-smooth and thus Algorithm 2
theoretically is not suitable for solving them. However, it still delivered usable
results.

For both algorithms, the initial field x1 was initialized to the measured depth
level image, and set to zero where no data was measured. Because of its
high flexibility, this implementation was used for all parameter and algorithm
tuning.
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Algorithm 1 Algorithm 2

Model: L2 L1 DHL Model: L2 L1 DHL

τ= 0.1 0.1 0.05 τ0 = 0.5 0.5 0.5

σ= 3.0 3.0 3.0 σ0 = 0.3 0.3 0.3

θ = 0.2 0.2 0.2 γ= 0.02 0.02 0.02

Table 4.1: Hyperparameters chosen for different algorithm and model combi-
nations.

Through the OpenCV Python bindings, most of the boilerplate code to handle
digital images could be easily ported from the Gurobi C++ implementation.
Additionally to just processing single images for development, a version which
can read video files and show inpainted frames as processing is done was added.

Both algorithms have three tunable hyperparameters. To chose them, all algo-
rithm and model configurations were run with various combinations of different
hyperparameters for a fixed number of iterations. The ones shown in Table 4.1
were then picked by comparing the results visually. The choice of model pa-
rameters is discussed in subsection 4.2.5.

4.2.2 CUDA and OpenCL

Both the differential and proximal operators shown in chapter 3 consist only
of elementwise operations. This makes them highly parallelizable by running
updates on multiple CPU cores, or a Graphics Processing Unit (GPU). Mod-
ern graphics processing units consist of a large number of small processing
units. For example, the GeForce GT 750M used in this project offers 384
cores. Those cores are individually much less complex and capable than a
modern conventional CPU, but enable large scale parallelization through their
numbers. When talking about general purpose programming on GPUs, the
terms "host" and "host memory" refer to the CPU and system memory of
a computer, while "device" and "device memory" refer to the GPU and its
dedicated graphics memory. The GPU cores can only access graphics memory,
so data has to be transferred from host to device memory before computation
can be done on them.

The Theano implementation mentioned in subsection 4.2.1 was not capable to
exploit the parallel nature of the problem. Forcing Theano to execute code
on multiple CPU cores or the GPU leaded to much slower execution time.
According to its documentation, Theanos strength lies in parallelizing vector
and matrix operations well over the size of our problem. Too much time was
probably lost to memory copying and synchronization when using multicore
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processing. For example, data was copied back and forth between host and
device memory for every algorithm iteration. However, data transfer is actually
only needed before the first and after the last iteration. Inbetween, the current
state can reside in device memory. To overcome those issues, a fully custom
implementation as described here was built.

CUDA [18] is a software development kit and driver package developed and
offered by the GPU vendor NVIDIA. It offers a framework and SDK for general
purpose programming on GPUs. In CUDAs terms, so called kernels can be
executed in massively parallel manner on GPU cores. In this context, a kernel
is a small program working on a subproblem of the whole task. For example,
instead of iterating over an array sequentially and executing an operation on
each element, using CUDA a single kernel is instantiated for each array element
in parallel manner. Kernels are to CUDA and general purpose programming
on GPUs what shader programs are to OpenGL.

Additionally to parallelism, we get the advantage that the GPU can work
independently from the host system. Once data and program code are sent to
the GPU, it does not need further supervision until we fetch the results. To
exploit this, the CPU can already read and preprocess input data for the next
frame while computation for the last one is still going on the GPU.

Both the single image and video processing programs were ported from Theano
/ Python to CUDA / C++. Algorithm 1 and Algorithm 2 were both imple-
mented. Only the double hinge loss model was considered, because it delivered
the best results in comparision of the models. Implementing the other model
versions would be easy though, as only the proximal operators need to be
replaced.

The embedded platform does offer a GPU directly integrated within the CPU
chip (Intel HD Graphics). It cannot be leveraged using CUDA, because CUDA
only supports NVIDIA GPUs. It is however supperted by OpenCL. OpenCL is
an SDK very similar to CUDA, the main difference being that it is openly stan-
dardized and supported by multiple GPU vendors (among them Intel, NVIDIA
and AMD). Our implementation was consequently extended to also support
OpenCL.

The CUDA and OpenCL implementations are semantically identical to each
other and the Theano implementation. Given the same input and parameters,
they will produce the same results. Consequently, parameter tuning and algo-
rithm development done on the flexible Theano implementation can be directly
used for the GPU implementation.

4.2.3 APRON Plugin
APRON [19] is the software package used to program and interface the SCAMP-
5 sensor from the host computer. The easiest way to integrate our inpaint-
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ing/densification implementation was to write a plugin which is loadable by
APRON. This was easily possible with the C++ / OpenCL implementation.
APRON loads the inpainting and densification module as a DLL (dynamic
loadable library), and passes the data to the module as an array of float num-
bers. After processing, the inpainted frame can then be retrieved the same
way and is displayed in APRON.

4.2.4 Convergence
Realtime applications require a guaranteed upper boundary of processing time
for each frame. This lead us to iterate the algorithms a constant number of
time for each frame. Choosing the number of iterations per frame means
trading off between processing time and quality of the result.

Using the sample depth scene shown in Figure 4.1, convergence of both algo-
rithms on all three models was tested. For each model, Algorithm 1 was first
run for a high number of iterations (100’000). The results are shown in Fig-
ure 4.3. This served to establish ground truth in terms of convergence. Next,
both algorithms were run for 5’000 iterations on all models and after each step,
the error distance ε(x̂) to the ground truth was computed according to

ε(x̂) = 1

nm

∑
i , j

|xi , j − x̂i , j | (4.1)

where x̂ is the reconstructed depth map, x ground truth, and n×m its dimen-
sions.

The rates of convergence according to this method are plotted in Figure 4.4.
The number of 5’000 iterations was chosen because more than several hundred
or thousand iterations are not computable fast enough for a realtime imple-
mentation. Also, the error stops its initial steep descent approximately after
the 2’000 first iterations. The rate of convergence above 5’000 iterations is
thus not interesting for our application.

From the acquired data, we can see how many iterations were required for
a certain algorithm and model to reach given values of ε. The numbers are
shown in Table 4.2. To be able to interpret the numbers, we must know how a
reconstructed map with some given ε actually looks like. This will allow us to
estimate the number of iterations needed for a good trade off between quality
and speed. Visualizations for different ε are given in Table 4.3.

The pictures show very visible differences between ε = 0.01,ε = 0.005 and ε =
0.002. After that however, the differences become much less apparent. This
confirms that more than several thousend iterations of either algorithm will
not be necessary in our case. Often, ε = 0.01 should already be enough. Fig-
ure 4.4 shows that it makes sense to prefer Algorithm 1 over Algorithm 2 in
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(a) L2 (b) L1

(c) DHL

Figure 4.3: The three models after 100’000 iterations of Algorithm 1.

almost all cases, except for the DHL model and less than around 1’300 iter-
ations, which corresponds to ε ≈ 0.0035. Because this is exactly our mode of
application, we stick with the choice of Algorithm 2 for the DHL model in our
fast implementation.

Under the assumption that subsequent depth frames are highly correlated,
we can make use of partial convergence: instead of running the inpainting
algorithm from reset state for every new frame, we leave the current state of
the reconstructed field untouched and only update the data prior. We can
then run the algorithm for only a fraction of the number of iterations required
for full convergence, for example 200 or 500 iterations instead of 1200. Over
the course of 3-10 frames, we then have the same total number of iterations.
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(b) Algorithm 2

Figure 4.4: Development of error distance for both algorithms, depending on
the number of iterations.

Algorithm 1 Algorithm 2

Model: L2 L1 DHL Model: L2 L1 DHL

ε= 0.01 n = 428 473 859 n = 496 542 542

ε= 0.005 n = 527 612 1170 n = 658 876 905

ε= 0.002 n = 817 964 2036 n = 1489 4493 4080

ε= 0.001 n = 1168 1410 2372 n = - - -

ε= 0.0001 n = 6471 28407 30585 n = - - -

Table 4.2: The number of iterations needed to reach a certain error ε computed
according to Equation 4.1. A dash means that the given ε was not reached
during 100’000 iterations at this configuration.

4.2.5 Parameters

The results achievable using our models depends on a good choice of param-
eters. All of the models contain the λ parameter, regularizing the tradeoff
between smoothing the resulting field and closeness to the data prior. Higher
lambda means that higher weight for the data term, as can be seen in Table 4.4
and Table 4.5. The α parameter in the DHL model steers the allowed devia-
tion of the recovered depth map from the measured depth levels. It directly
corresponds to the depth of field effect. Table 4.4 shows how larger values of
α lead to a higher deviation from the data prior, thus leading to less variation
in the resulting field.

To choose parameters, all three variational models were run with a set of
different parameter combinations. Through visual inspection of the resulting
fields, the parameters shown in Table 4.6 were selected.
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Model: L2 L1 DHL

ε= 0.01

ε= 0.005

ε= 0.002

ε= 0.001

ε= 0.0001

Table 4.3: Resulting reconstructed depth maps for different models and ε. For
each map, Algorithm 1 was run until the given ε was reached. The correspond-
ing number of iterations can be seen in Table 4.2.
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Model: DHL α= 0.001 α= 0.02 α= 0.04

λ= 1.0

λ= 2.75

λ= 4.0

Table 4.4: Reconstructed depth maps for different parameter choices on the
DHL model. All maps were computed using 8000 iterations of Algorithm 1.

4.3 Comparison of models

Figure 4.3 contains the best results we achieved with every model. They were
made with the parameters we selected before, and are the result of running
Algorithm 1 for 100’000 iterations.

It can be seen that L2 yields a smooth image, but cannot remove individual
noisy pixels. L1 removes the noise, but makes for a much more blocky ap-
pearance. Double Hinge Loss gives a smoother looking image than L1, while
removing the noisy pixels visible in L2. Those differences make sense consider-
ing that the L2 model is, from a bayesian viewpoint, a MAP estimate assuming
gaussian noise and a TV prior [20]. The L1 and DHL model on the other hand
assume laplacian noise, which is closer to reality in our data.

In our opinion, the double hinge loss model offers the best compromise between
noise removal and smoothness.
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4.3. Comparison of models

Model: L2 L1

λ= 15 λ= 1.00

λ= 30 λ= 2.75

λ= 50 λ= 4.00

Table 4.5: Reconstructed depth maps for different choices of the λ parameter
on the L2 and L2 models. All maps were computed using 8000 iterations of
Algorithm 1.

Model: L2 L1 DHL

λ= 30 2.75 2.75

α= - - 0.02

Table 4.6: Final parameters chosen for the different models. A dash means
that the model does not use the parameter.
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4. Implementation and Results

4.4 Frame Rate
Execution time of the different implementations was measured on on both Mac-
book and the embedded platform. The timing results are shown in Table 4.7.
The Gurobi implementation does not have the number of iterations listed, be-
cause they are not comparable to the number of iterations in Algorithm 1 or 2.
Directly comparable however are the δtframe and frames per second numbers.
Running Algorithm 2 for 1200 iterations is roughly equivalent to running the
Gurobi implementation for one frame. This means that the Theano imple-
mentation delivers results of equal quality at around double the frame rate the
Gurobi implementation does, and OpenCL on Macbook at more than 37 times
the frame rate.

When looking at the timing results for 200 and 500 iterations using partial con-
vergence, we see that we can inpaint frames at up to 36.5 fps on the Macbook,
and up to 5 fps on the embedded platform.

On the Macbook, the OpenCL implementation can make use of both the Iris
Pro graphics processor integrated with the CPU, or the dedicated NVIDIA
graphics card. CUDA on the other hand can only use the NVIDIA GPU. As
can be seen in the results, the OpenCL is slightly faster than CUDA. The effect
is bigger when using less iterations per frame. This might seem surprising at
first, because the dedicated graphics card is supposed to be more powerful.
It however makes sense if we accept that our problem is still memory bound:
the integrated Iris Pro graphics chip uses system memory instead of separate
graphics memory. When using it, data does thus not have to be copied around
between two different physical locations.

4.5 File Formats
The code running on SCAMP-5 currently outputs only a single grayscale image
per frame. Pixels without measured data are set to 0 and are not distinguish-
able from pixels with measured data of value 0. Our inpainting/densification
implementation simply assumes every pixel from SCAMP-5 with value 0 to
be not measured. In the APRON plugin for our implementation, the sparse
depth data is received as a memory chunk of float numbers ranging between
0.0 and 255.0 (even though the values are discrete, e.g. in 32 levels). If sparse
depth data has to be saved for later processing, it is simply stored as greyscale
PNG image with the same assumption made above.

For storing videos however, there is a workaround needed. There was no
lossless video format with support on all needed platforms available. The
lossy compression formats however caused pixels to change from 0 to very low
values > 0 (compression artifacts). This made working with the above solution
impossible. The workaround is to save the depth values in the videos green and
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4.5. File Formats

Implementation Platform Iterations δtframe δtiter fps

Discrete model, Gurobi Macbook n.a. 3896ms n.a. 0.3

DHL, alg. 2, Theano Macbook 200 309.6ms 1.548ms 3.2

DHL, alg. 2, Theano Macbook 500 746.3ms 1.493ms 1.3

DHL, alg. 2, Theano Macbook 1200 1793.4ms 1.495ms 0.6

DHL, alg. 2, CUDA Macbook 200 28.7ms 0.143ms 34.9

DHL, alg. 2, CUDA Macbook 500 70.0ms 0.140ms 14.3

DHL, alg. 2, CUDA Macbook 1200 158.9ms 0.132ms 6.3

DHL, alg. 2, OpenCL Macbook 200 27.4ms 0.137ms 36.5

DHL, alg. 2, OpenCL Macbook 500 46.0ms 0.092ms 21.8

DHL, alg. 2, OpenCL Macbook 1200 104.5ms 0.087ms 9.6

DHL, alg. 2, OpenCL Lattepanda 200 201.7ms 1.009ms 5.0

DHL, alg. 2, OpenCL Lattepanda 500 467.3ms 0.935ms 2.1

DHL, alg. 2, OpenCL Lattepanda 1200 1169.1 0.974ms 0.9

Table 4.7: Timing measurements. All but the first entry in the table were
measured using the double hinge loss model and Algorithm 2. In the Gurobi
implementation, the number of iterations could not be set and the average
of 5 subsequent runs is shown. For the other implementations, the average
of processing each frame of a video clip containing 84 frames in total was
computed. All measurements do not include time for loading and initialization.
Iterations means the number of times the algorithm was looped per video frame.
Frames per second is a theoretical value calculated as fps= 1/δtframe.

red channel, and extract the image mask into the blue channel with discrete
values of {0,255}.
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Chapter 5

Conclusion and Outlook

5.1 Conclusion

In this project we have developed a pipeline for collecting depth maps from
focus. Building upon an already existing optical and sensoric system, our main
contribution is a system which computes dense and inpainted depth maps from
sparse depth level data retrieved by the sensor. Exploring different models and
their implementation, we show that it is possible to do this close to real time (5
fps) on an embedded platform, or at up to 36.5 fps a recent consumer mobile
graphics card. The computational work necessary to collect sparse depth maps
is completely offloaded onto the neuromorphic vision sensor, which makes the
system fast and energy efficient.

The presented system works in a purely passive manner and does not require
emission of energy. Because a liquid lens which is quickly tunable using an
electric current is used, there are no mechanical movable parts in the system.
The system is currently physically limited by the maximum size of the aperture
(DoF resolution), and the limited light sensitivity of the sensor used (frame
rate). Computationally, we are limited by the speed at which we can inpaint
sparse frames.

From a broader point of view, the project explores the class of variational
algorithms which could be highly suitable for implementation on neuromorphic
hardware. We show that our problem, with a global objective given, can be
solved using local state and updates. This highly suits the distributed memory
and computational elements inherent to neuromorphic systems.

5.2 Future Work

The system presented offers several approaches for improvement.
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5. Conclusion and Outlook

Physical limitations Several of the mentioned physical limitations could be
overcome by better hardware. Using a tunable lens with bigger aperture
would allow us to get a higher depth resolution, because the depth of field
would be reduced. A sensor with higher light sensibility would allow for
faster collection of depth frames. Using a telecentric tunable focus lens
could remove zooming artifacts currently present in depth frames.

Computational power Using more powerful or higher clock rate GPU would
serve to make inpainting and densification models run faster. Also pos-
sible is implementation on an FPGA.

Preprocessing on SCAMP-5 Some of the processing needed for inpainting and
densification could be offloaded directly to the neuromorphic sensor. For
example, anisotropic diffusion is a well suited pre-processing step. This is
currently not possible because SCAMP-5 can currently not differentiate
between measured 0 values and missing data.

Integrated segmentation The variational models used for inpainting and den-
sification could be extended to automatically implement simple segmen-
tation, for example detection of obstacles versus free space.

Using additional sensors For example, an inertial measurement unit could
be leveraged to detect when the field of view is static, and the conver-
gence schema and number of iterations for inpainting could be changed
accordingly.

Improvement of models The current models for inpainting and densification
could be improved, for example by adding an additional term for smooth-
ing the resulting field. This would prevent some of the staircasing effects
visible in the current results.
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