
A Dynamic Field architecture for the generation
of hierarchically organized sequences

Boris Durán1, Yulia Sandamirskaya2, and Gregor Schöner2
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Abstract. A dilemma arises when sequence generation is implemented
on embodied autonomous agents. While achieving an individual action
goal, the agent must be in a stable state to link to fluctuating and time-
varying sensory inputs. To transition to the next goal, the previous state
must be released from stability. A previous proposal of a neural dynam-
ics solved this dilemma by inducing an instability when a “condition of
satisfaction” signals that an action goal has been reached. The required
structure of dynamic coupling limited the complexity and flexibility of
sequence generation, however. We address this limitation by showing how
the neural dynamics can be generalized to generate hierarchically struc-
tured behaviors. Directed couplings downward in the hierarchy initiate
chunks of actions, directed couplings upward in the hierarchy signal their
termination. We analyze the mathematical mechanisms and demonstrate
the flexibility of the scheme in simulation.

Keywords: Sequences, Dynamic Field Theory, Hierarchies, Intention-
ality

1 Introduction

Perhaps you have once thought about a new paper while cooking your dinner
and keeping an eye on the toddler next door, being interrupted by a phone call
and then returning to your last thought. If so, then you were demonstrating a
hallmark of human embodied cognition, our capacity to generate well-organized
sequences of mental and physical acts while faced with a complex, time-varying
environment. Enabling artificial cognitive systems to generate sequences requires
theoretical understanding of sequence generation shaped into process models
that can be linked to real sensory information, that control real effectors, and
that operate in the real world.

Although considerable theoretical work has focussed on sequence generation,
often with methods from the theory of neural networks [1–3], the demands of em-
bodiment have received little attention. A critical issue in acting out sequences
is the conflict between a need for stability to resist change while performing a
step in a sequence, and a need for release from stability to transition to the
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next step. Previously, we have proposed a neural dynamics that addresses this
issue [4]. Each step in a sequence is an attractor state that steers in closed loop
the action of an agent toward the intended action goal. A specialized neural
structure represents the “condition of satisfaction”, that continuously compares
the current intention to perceptual information. When perception matches in-
tention, a dynamical instability releases the current attractor from stability and
switches to the next attractor. This proposal was elaborated in simple models [4,
5], in which a set of ordinal units represents the serial order of a sequence. Each
ordinal unit projects onto the sensory and motor systems required to achieve
each action goal. Although we have recently generalized this idea to enable flex-
ible reorganizations of sequences in a robotic setting [6], this proposal faces a
fundamental limitation. Every time a new sequence is learned, new units must
be linked to the relevant sensory and motor systems, increasing combinatorially
the number of these units and of the associated connections.

Cognitive scientists and roboticists have recognized that scaling the complex-
ity of real-world sequence generation requires hierarchical structures, in which
chunks of subsequences and individual action units can be reused flexibly [7–10].
Such hierarchies are conceptually founded on an information processing view
of neural computation in which each stage of a computation has a well defined
outcome that then triggers the next computational step. This conception makes
strong demands on each element of the hierarchy so that it may perform its com-
putation independently of the state of the agent and of its environment. This
leaves the stability/instability dilemma unaddressed. Our previous effort was to
reduce such demands by making each stage of a sequence a stable state that can
operate in closed loop with online sensory information.

In this paper we ask how this principle may be generalized to emulate hier-
archies. We propose a neural dynamics in which ordinal neurons may call entire
chunks or subsequences at a lower level of a hierarchy. When they do so, they
not only trigger the transition to the first element of the chunk, but also set the
“condition of satisfaction” that signals the termination of the chunk and orga-
nizes the return to the calling point in the hierarchy. This leads to a dynamical
hierarchy, in which the progression downward the hierarchy is governed by a dy-
namics of intention, and the return to higher levels of the hierarchy is governed
by a dynamics of conditions of satisfaction. The present paper elaborates the
critical mathematical mechanisms and demonstrates these in simulation while a
demonstration on a robotic hardware is not yet part of the present contribution.
The approach is similar in spirit to earlier work by Stringer and colleagues [11],
but enables generalization beyond the motor sequences treated there by making
the analysis and synthesis of the dynamical instabilities more explicit.

2 The model

In Dynamic Field Theory (DFT), the states of a cognitive system are represented
as attractor states of Dynamic Fields (DFs) [12], defined over behaviorally rele-
vant perceptual, motor, or abstract spaces [13]. Localized peaks are induced in
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DFs by external inputs and are stabilized by lateral interactions. Discrete dy-
namic nodes may be introduced in this framework with an analogous bi-stable
dynamics. Bistability of dynamic fields and dynamic nodes enables not only their
coupling to real sensory-motor systems, but also coupling to each other through
weighted connections, while preserving stability and robustness of the overall
dynamics.

Here, we describe two subsequent layers of the hierarchical DF architecture
for sequence generation (Fig. 1). Each layer contains a number of elementary
behaviors (EBs). The EBs at the lower layer of the hierarchy directly drive overt
actions and the EBs at the upper layer may activate subsequences, or chunks, at
the lower layer. An EB consists of five elements – three discrete neural activation
variables (the memory, ordinal, and condition-of-satisfaction nodes) and two
dynamic fields (the intention field and the condition-of-satisfaction field). Their
dynamics and couplings are described next.
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Fig. 1: Illustration of the structure of a single elementary behavior (EB) and the
inter- and intra-layer coupling for the hierarchical organization of sequences.

Ordinal nodes. An EB (index j within layer i) is activated by its ordinal node,
voi,j , that generates output through a sigmoidal non-linearity, σ(·). In the dy-
namics

τov̇oi,j = − voi,j + ho + co,oσ(voi,j) − c−
∑

j′(6=j)

σ(voi,j′) − co,sσ(vsi,j)

+
∑
k

∑
j′

W o,m
i,j,j′,kσ(vmi,j′)σ(voi−1,k) +

∑
k

W o,o
i,j,kσ(voi−1,k) (1)

τo is the time constant, ho is a negative resting level, co,o is the strength of
self-excitatory input, c− is the strength of the mutual inhibition between ordinal
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nodes in a layer. co,s is an inhibitory input from the condition-of-satisfaction node
of the EB, which deactivates the ordinal node when the EB is finished. W o,m

i,j,j′,k

is a connection weight from the memory node j′ to the ordinal node j, both
in layer, i that controls the sequential activation of ordinal nodes within layer.
There is one weight matrix per possible chunk (index k), each being activated by
an ordinal node at the upper layer, voi−1,k. Finally, W o,o

i,j,k are connection weights
from ordinal nodes in the upper layer to ordinal nodes of the current layer,
which bring ordinal nodes belonging to a given chunk, k, closer to the activation
threshold.

Memory nodes. The memory nodes, vmi,j , become activated when the associ-
ated ordinal node has been activated. They remain active through strong self-
excitatory coupling until the entire chunk, of which they are part, has been
executed. An active memory node provides excitatory input to the next ordi-
nal node in a sequence, so that the memory nodes through their connections to
the ordinal nodes encode the serial organization of EBs within a layer. In the
dynamics

τmv̇mi,j = − vmi,j + hm + cm,mσ(vmi,j) + cm,oσ(voi,j) +
∑
k

Wm,o
i,j,kσ(voi−1,k) (2)

notations is analogous to that of Eq.(1). Note that there’s no mutual inhibition
between memory nodes.

Condition-of-satisfaction nodes. An active CoS node, vsi,j : σ(vsi,j) > 0, signals
that the behavioral goals of the EB have been realized. In the activation dynamics

τsv̇si,j = − vsi,j + hs + cs,sσ(vsi,j) − c−max
j

(
σ(vsi,j)

)
+ cs,mσ(vmi,j)

+
∑
k

W s,o
i,j,kσ(voi−1,k) + cs,cos

∫
σ(usi,j(x

′))dx′ +
c+

lc

∑
l

σ(vsi+1,l) (3)

the first three terms of Eq.(3) form the generic dynamics of an Amari node,
the fourth term is a global inhibition within a layer. Input from the memory
node of the EB is scaled by the constant, cs,m, and input from the active ordinal
node at an upper layer is scaled by the chunk-dependent synaptic weights W s,o

i,j,k.
These two inputs enable activation of the CoS node by contributions that signal
completion of the EB encoded in the last two terms of Eq.(3). A positive input
from the CoS field, usi,j(x), Eq.(5), signals accomplishment of a motor action
at the lowest layer. In the upper layer, the CoS node also detects the end of
a chunk by collecting input from the CoS nodes within the chunk at the lower
layer. This contribution has a constant factor c+ and is scaled inversely to the
length of the chunk lc. The chunk’s length is estimated by summing the non-zero
synaptic connections between the memory and the ordinal nodes for the lower
layer, W o,m, Eq.(1).

When a CoS node becomes active, it inhibits the respective ordinal node and
triggers an instability in the dynamics of the EB, which leads to the sequential
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transition at the current layer of the hierarchy and to a reset of the memory, the
CoS, and the ordinal nodes at the lower layer in a reverse detection instability.
The CoS nodes thus organize the generation of sequences in time.

Intention field. An intention field, uinti,j (x), is associated with every EB and
receives localized input from the ordinal nodes. An active ordinal node thus
specifies parameter values of the intended action. Typical parameters, x, are
feature values that specify a perceptual goal (e.g., the color of an object that
must be visually searched) or movement parameters (e.g., the direction in which
an effector is moved). The dynamics of the intention fields reads:

τ intu̇inti,j (x) = −uinti,j (x)+hint+

∫
σ(uinti,j (x′))wint(x−x′)dx′+σ(voi,j)W

int
i,j (x). (4)

The intention field receives input from the associated ordinal node, voi,j , through

a synaptic weights function, W int
i,j (x), that would typically be learned [4], but

will be set to particular localized gaussian inputs in the simulations below. This
input pushes the intention field through the detection instability and induces
a localized activation peak. The peak is not sustained, so that it decays when
localized input from the ordinal node is removed. As long as the intention field
is activated, it impacts on the down-stream sensory-motor structures (dynamic
fields and motor dynamics) and sets attractors in these structures that result in
the overt behavior of the agent.

Condition-of-satisfaction field. The CoS field, ucosi,j (x), detects if the intended
action or perceptual state of the calling EB, expressed by a peak in the intention
field, has been realized. It does so by matching the pattern induced by input
from the intention field to sensory information. When a match is detected, a
peak forms in the CoS field and activates the CoS node, ultimately triggering a
cascade of instabilities that leads to the deactivation of the current EB and the
activation of the next EB within a layer. The dynamics of the CoS field reads:

τ cosu̇cosi,j (x) = −ucosi,j (x) + hcos + ccos
∫
σ(ucosi,j (x′))wcos(x− x′)dx′

+ ccos,int
∫
σ(uinti,j (x′))wcos,int(x, x′)dx′ + Icos(x). (5)

The CoS field receives input from two sources. The intention field provides local-
ized input at the locations along the dimension of the CoS field specified by the
coupling kernel, wcos,int(x, x′). If this input overlaps with the perceptual input,
Icos(x), the CoS field goes through a detection instability and an activation peak
builds-up in this field. The peak is not self-sustained and decays when either of
the two inputs ceases after the behavior has been realized.

3 Results

To demonstrate how the dynamic field architecture may generate sequences with
a hierarchical structure, we describe here an exemplar simulation. We show two
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layers of the hierarchy: at the top layer, a sequence of three EBs is generated, each
driving a subsequence (chunk) of EBs at the lower layer. In particular, we want
to make three points here: (1) show how individual EBs and whole chunks may
be reused at different positions in the sequences; (2) show how simulated sensory
input to the CoS DF may be integrated with the CoS that signals the completion
of a subsequence; (3) demonstrate context-dependent, variable timing of the
subsequences. In this simulation, the ordinal nodes within a layer project onto a
single intention field for simplicity of presentation, but separate intention fields
for every EB may also be used if the application requires it [6, 5].
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Fig. 2: Activity of fields through time.

Fig. 2 shows on the top-left and activation time-course of the intention field
at the upper layer of the hierarchy. The three traces of positive activation cor-
respond to three different action goals for the three EBs at the upper layer. The
bottom-left plot shows activation of the intention field at the lower layer. The
dashed vertical lines mark the chunks, activated by the upper layer. Note that
an EB may be reused in different chunks. Also, entire chunks may be reused at
different points in the upper-layer sequence (chunks 1 and 3).

The right column of Fig. 2 shows the time-courses of activation of the CoS
fields of the upper (top) and lower (bottom) layer of the hierarchy. Traces of the
sensory input can be seen in the CoS fields, which have simple time courses in
this simulation, but could form more complex trajectories in a dynamic environ-
ment. We modulated the dynamics of the simulated sensory input to emulate
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the variability in timing of the real-world sensory input. This illustrates that se-
quence generation is robust against differences in the duration of each EB (see,
e.g., first EB of the reused junk across the two repetitions of the chunk). The
CoS field of the upper layer is activated as soon as the sensory input overlaps
with input from the intention field. The CoS node (not shown), however, is only
activated when the chunk at the lower level is finished. Only then is the intention
field of the upper layer deactivated (top-left plot) and, consequently, the CoS
field of the upper layer deactivated as well (top-right plot).
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Fig. 3: Activity of memory nodes through time.

Fig. 3 shows the activity of the memory nodes at the upper (top plot) and the
lower (bottom plot) layers. Each memory node is activated by the ordinal node
of the associated EB. The memory node is brought to the level of self-sustained
activation when the EB ceases and stays at this level until the end of the chunk.
At the end of the chunk, the ordinal node of the upper layer is inhibited and
the memory nodes of the lower layer decay to the negative resting level. The
memory node of the upper layer stays at a self-sustained level of activation until
the end of the sequence. Note the variable duration of EBs, even for the same
chunk at positions 1 and 3 of the upper-layer sequence.

4 Discussion

The neural dynamics proposed in this paper provides a general and robust mech-
anism for transitioning from the stable state that each stage of a behavioral
sequence represents to its successor state. The mechanism enables inserting a
chunk or subsequence at any point and then returning to the ongoing sequence
at the higher level of an implied hierarchy. Transitions to a lower level of the
hierarchy are based on the same principle as transitions within each level and
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enable sustaining the stable state at each step for variable amounts of time until
perceptual information matches the expected outcome of the stage, inducing a
detection instability in the associated “condition of satisfaction” (CoS) system.
This concept of a CoS is also used to organize the transition from the end of a
chunk to the next stage of a sequence at the higher level, from which the chunk
was initiated. The hierarchical organization enables reuse of the same chunk at
different points in the sequence. Moreover, different chunks may overlap, reusing
elementary behaviors or subsequences. This core mechanism opens the neural
dynamics of sequence generation to the much richer class of hierarchically orga-
nized sequences.
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