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Abstract— Biological neural systems even of simple animals
solve many tasks that are relevant for robotics with an un-
precedented efficiency and flexibility. Drawing inspiration from
these neural systems, neuromorphic engineers develop a new
generation of neurally inspired hardware that realises spiking
neural networks that run in real time, on compact (a few mm2)
computing devices that consume just a few mW of power. In
our work, we develop neuronal computing architectures for
neuromorphic hardware that solve different robotic tasks. Here
we present one such architecture that enables estimation of the
pose of an agent based on the external cues, the learned map,
and integration of self-motion signals. We demonstrate, for the
first time, online adaptation and error correction of the pose
estimation realised fully in a spiking neural network, running
on a neuromorphic research chip Loihi, interfaced to a robotic
vehicle.

I. MOTIVATION AND RESULTS

Neuromorphic engineers originally followed a bottom-
up approach and emulated the dynamics and structure of
cortical neuronal networks in electronic hardware [1]. Today,
both mixed-signal and digital neuromorphic devices can
solve relevant computational tasks with efficient, massively
parallel, and event-driven neuronal networks on chip [2],
[3], [4]. This hardware is potentially particularly well-suited
for robotic applications due to its compact size, low power
consumption and massively parallel, event-based processing.

Here, we present a crucial component of SLAM – the state
estimation architecture with adaptation and online learning.
We consider a 1D case of a small robotic vehicle rotating on
a spot and observing a number of objects1. In this simple set-
ting we address all sub-tasks of SLAM: the system estimates
the orientation of the robot through path integration on chip;
at the same time the orientation can be inferred based on
the learned map: visual cues leave memory traces in plastic
synapses between the state estimation and representation of
the visual cues. When the two state estimations do not match,
the error is detected and its magnitude is estimated, triggering
either update of the speed of neuronal path integration, or
of the map. Each architectural component is implemented
with spiking integrate-and-fire neuronal networks on the
neuromorphic research chip Loihi. The network is tested both
with recorded data and on the physical robot, showing online
learning, forgetting, update, and adaptation.

Fig. 1(A) shows the core component of the Spiking Neural
Network (SNN) – the error estimation circuit that computes
the difference between the orientation estimate obtained from
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integrating the velocity signals in a heading direction (HD)
network, and the orientation estimate based on the learned
map of visual cues, detected by the robot on previous turns.
The activity plot (B) shows spikes from the HD neurons for
a trial when integration speed had to be reduced due to a
detected small positive error: the estimation based on path
integration was ahead of the visually-induced estimation. Plot
in Fig. 1C, to the contrary, shows how the neuronal map is
updated if a large error is detected.

Fig. 1. (A) SNN architecture for path integration, error detection,
recalibration, and map learning. (B) Neural activity in HD network: When
error is detected, path integration speed is adjusted. (C) Synaptic weights
increase when LEDs are detected at new positions and decrease when LEDs
where learned but are not detected. (D) The neuromorphic processor Loihi.
(E) The robotic vehicle.
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