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We propose a neural dynamic model that specifies how low-level visual processes can be integrated with
higher level cognition to achieve flexible spatial language behaviors. This model uses real-word visual
input that is linked to relational spatial descriptions through a neural mechanism for reference frame
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flexibility under realistic stimulus conditions. At the same time, it also provides a detailed neural
grounding for complex behavioral and cognitive processes.
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People use spatial language in impressively flexible ways that
can sometimes mask the complexity of the underlying cognitive
system. The capacity to freely establish appropriate reference
points using objects in the local environment is a critical compo-
nent of this flexibility. The description, “The keys are to the right
of the laptop,” for example, uses the relational information in the
visible scene to ground the location of the keys relative to the
laptop. Conversely, listeners easily use such relational spatial
descriptions to establish reference points in the local environment,
thus enabling them to comprehend and act on such messages (e.g.,
to locate the keys). The purpose of this article is to give a detailed
theoretical account of the cognitive processes—described at the

level of neural population dynamics—necessary to generate and
understand relational spatial descriptions.

To this end, our neural dynamic model addresses two key goals.
First, we seek to ground spatial language behaviors in perceptual
processes directly linked to the visible world. Second, we seek to
establish a single, integrative model that generalizes across mul-
tiple spatial language tasks and experimental paradigms. We spe-
cifically address three spatial language behaviors that we consider
foundational in real-world spatial communication: (a) Extracting
the spatial relation between two objects in a visual scene and
encoding that relation with a spatial term, (b) guiding attention or
action to an object in a visual scene given a relational spatial
description, and (c) selecting an appropriate reference point from
a visual scene to describe the location of a specified object.

To formulate a process model of these basic spatial language
behaviors, it is useful to consider the underlying processing steps.
According to Logan and Sadler (1996; see also Logan, 1994,
1995), the apprehension of spatial relations requires the following:
(a) the binding of the descriptive arguments to the target and
reference objects (spatial indexing), (b) the alignment of the ref-
erence frame with the reference object, (c) the mapping of the
spatial term region (e.g., the spatial template for above) onto the
reference object, and (d) the processing of that term as an appro-
priate fit for the spatial relation. These elements may be flexibly
combined in different ways to solve different tasks (Logan &
Sadler, 1996). In a standard spatial term rating task, for example,
in which individuals are asked to rate the applicability of a spatial
term as a description of a visible spatial relation (e.g., “The square
is above the red block”), individuals would first bind the argu-
ments (“the square” and “the red block”) to the objects in the
scene. With the items indexed, the reference frame can then be
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aligned with the reference object, the given spatial term can be
mapped to scene, and the ratings assessment can be given.

It is important to note that these elements need not always be
strictly sequential or independent. In a more open-ended spatial
description task, for example, reference frame selection is tightly
interlinked with spatial term selection. To select an appropriate
reference object, one must consider which choice will allow for a
simple and unambiguous spatial description of the desired target.
On the other hand, the spatial description cannot be determined
before the reference point is fixed. This interrelation is highlighted
by recent experimental results from Carlson and Hill (2008) show-
ing that the metric details of object arrangement in a scene strongly
influence reference object selection: Individuals were more likely
to select a nonsalient object as a referent when it provided a better
match to axially based projective terms (e.g., above, right) than a
salient candidate reference object.

The link between visual information of object positions and the
relational spatial descriptions of those positions is a central ele-
ment of Logan and Sadler’s (1996) conceptual model and of all the
tasks we consider here. Describing the position of an object rela-
tive to another one is equivalent to specifying that position in an
object-centered frame of reference centered on the selected refer-
ence object. This requires a reference frame transformation from
the retinal frame in which the objects are initially perceived onto
an object-centered reference frame.1 Different positions within this
object-centered frame can then be linked directly to different
projective spatial terms. To date, there are no formal theories that
specify how spatial language behaviors are grounded in such lower
level perceptual processes, yet still retain the hallmark of human
cognition—behavioral flexibility.

In the present article, we describe a new model of spatial
language behaviors that specifies how lower level visual processes
are linked to object-centered reference frames and spatial seman-
tics to enable behavioral flexibility. In addition, we show how this
goal can be achieved while bridging the gap between brain and
behavior. In particular, the model we propose is grounded both in
neural population dynamics and in the details of human behavior.
We demonstrate the latter by quantitatively fitting human perfor-
mance from canonical tasks in the spatial language literature. This
leads to novel insights into how people select referent objects in
tasks where they must generate a spatial description. The model
also shows how the processing steps specified by Logan and
Sadler (1996) can be realized in a fully parallel neural system.
Indeed, the parallel nature of this system is critical to the range of
behaviors we demonstrate, consistent with work suggesting that
flexibility can emerge from dynamic changes of active represen-
tational states that are coupled to the world through sensory inputs
(see Barsalou, 2008; Beer, 2000; Schöner, 2008; Sporns, 2004;
Thelen & Smith, 1994; Tononi, Edelman, & Sporns, 1998).

To achieve our central goals, we use the framework of Dynamic
Field Theory (DFT; Erlhagen & Schöner, 2002; Spencer, Perone,
& Johnson, 2009). The DFT is a theoretical language based on
neural population dynamics that has shown promise for bridging
the gap between brain and behavior (Schöner, 2008; Spencer &
Schöner, 2003). In particular, DFT has successfully captured hu-
man performance in quantitative detail (Johnson, Spencer, Luck, &
Schöner, 2009; Schutte & Spencer, 2009; Simmering & Spencer,
2009) and aspects of this approach have been directly tested using
multiunit neurophysiology (Bastian, Schöner, & Riehle, 2003;

Erlhagen, Bastian, Jancke, Riehle, & Schöner, 1999) as well as
ERPs (McDowell, Jeka, Schöner, & Hatfield, 2002). Critically, the
present article also builds on insights of other theories, including
the Attentional Vector-Sum model (Regier & Carlson, 2001),
which has been used to quantitatively capture human performance
in spatial ratings tasks, and recent work in theoretical neuroscience
examining reference frame transformations (Pouget & Sejnowski,
1997; Salinas & Abbott, 2001; Zipser & Andersen, 1988). These
neural models use population codes to represent object locations
and other metric features like current eye position, and they detail
how mappings between different spatial representations can be
realized by means of synaptic projections.

To maintain strong ties to the empirical literature on spatial
language, we focus only on spatial relations in a two-dimensional
image and consider only those cases where an object-centered
reference can be achieved by shifting the reference frame in the
two-dimensional image plane (for treatments of reference frame
rotation and intrinsic object axes in spatial language see, e.g.,
Carlson (2008) and Levinson (2003). Furthermore, we concentrate
on the four projective terms left, right, above, and below. These
spatial terms have been studied extensively in the two-dimensional
plane across differing tasks (e.g., Carlson & Logan, 2001; Landau
& Hoffman, 2005; Logan, 1994, 1995; Logan & Sadler, 1996;
Regier & Carlson, 2001) and thus provide a rigorous basis for
assessing the behavioral plausibility of our model.

To preview our results, we show that our integrated neural
dynamical system can generate a matching spatial description for
specified objects, rate the applicability of a spatial term for the
relation between two objects, localize and identify an item in a
scene based on a spatial description, and autonomously select an
appropriate reference point to describe an object location. The
ratings and spatial description demonstrations are particularly im-
portant because they include quantitative fits to published empir-
ical findings. Through these demonstrations, we show that our
system can provide an integrated account for a large range of
qualitatively different spatial language behaviors. At the same
time, we establish a strong connection to theoretical neuroscience
by grounding these behaviors in a formal neural dynamic model
that describes the transformation of low-level visual information
into an object-centered reference frame.

Toward a Neurobehavioral Account of Spatial
Language Behaviors

Before describing our theory, it is useful to place this work in
the context of the current theoretical literature. Thus, the following
sections focus on two exemplary models in spatial cognition. The

1 In the neurosciences, locations defined relative to an object in the
world where the object is at the origin are typically referred to as “object-
centered” reference frames (e.g., Chafee, Averback, & Crowe, 2007;
Colby, 1998; Crowe, Averback, & Chafee, 2008; Salinas & Abbott, 2001).
Because of our neural dynamic focus, we adopt this convention here. In so
doing, however, we make a simplifying assumption that the orientation of
the object-centered reference frame is fixed according to the viewer’s
perspective. Note that this use of object-centered does not refer to the
intrinsic axes of the reference object as it often does in the spatial language
literature. For an extensive treatment of these and related issues surround-
ing reference frame terminology, see Levinson (2003).
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first is the Attentional Vector-Sum (AVS) model (Regier & Carl-
son, 2001), a neurally inspired model that accounts for a range of
spatial language ratings data for axial spatial terms (left, right,
above, below; for recent extensions of this model, see Carlson,
Regier, Lopez, & Corrigan, 2006). The second is a neural
population-based approach to reference frame transformation pro-
posed by Pouget and colleagues (Deneve, Latham, & Pouget,
2001). As we shall see, although neither approach by itself enables
the range of flexible spatial language behaviors we pursue here,
each model reveals key insights into the operations supporting
object-centered spatial language behavior. Our neural dynamic
framework shows how the insights of each of these models can be
integrated to yield a behaviorally flexible spatial language system.

The Attentional Vector-Sum Model

The Attentional Vector-Sum (Regier & Carlson, 2001) model
provides an appropriate starting point for our discussion for several
reasons. First, it is a formalized model and thus avoids interpre-
tative ambiguities. Second, many of its properties are motivated by
research examining neural population dynamics. Finally, it pro-
vides good fits to empirical data from several experiments, offer-
ing a parsimonious account of these data.

The AVS model builds on two independently motivated obser-
vations. First, spatial apprehension and, therefore, the rating of a
spatial relationship require attention to be deployed on the relevant
items (Logan, 1994, 1995). Second, the neural encoding of direc-
tions can be described by a weighted vector sum (Georgopoulos,
Schwartz, & Kettner, 1986). Specifically, when nonhuman pri-
mates perform pointing or reaching tasks, individual neurons in
both the premotor and motor cortex show different preferred
movement directions. Each of these neurons is most strongly
activated for movements in a certain range of directions but shows
lower activity for other movements. When the vectors describing
each neuron’s preferred direction are scaled with the neuron’s
activation, the vector sum across the neural population predicts the
direction of an upcoming reach.

Regier and Carlson (2001) applied the concept of vector sums to
spatial relations by defining a vector from each point in the
reference object to the target location. These vectors are then
weighted according to an “attentional beam,” which is centered on
that point of the reference object that is closest to the target. The
orientation of the sum of attentionally weighted vectors (more
precisely, its angular deviation from a cardinal axis) forms the
basis for computing ratings of spatial term applicability. A second,
independent component in computing the rating is height, which
gauges whether the target object is higher, lower, or on the same
level as the top of the reference object.

AVS has captured a host of empirical results probing how
factors such as reference object shape, orientation, and the hori-
zontal grazing line influence the applicability of spatial descrip-
tions to the layout of objects in a scene. In particular, AVS
accounts for the finding that above ratings are independently
sensitive to deviations from (a) the proximal orientation (the
direction of the vector connecting the edge of the target object with
the closest point of the reference object) and (b) the center-of-mass
orientation (the direction of the vector connecting the center of
mass of the reference object to the center of mass of the target
object).

Although AVS incorporates key aspects of attention and neural
population vector summation, it is not itself a neural model. It does
not use population codes to perform computations and it does not
specify the source of the attentional weighting that it employs. For
instance, the model does not specify how a neural system could
determine the vectors that connect reference and target objects
based on actual visual input—a key aspect of the spatial indexing
function outlined by Logan and Sadler (1996). We aim to develop
a neural implementation that provides this grounding in perceptual
processes while at the same time retaining the commitment of
AVS to capturing human ratings responses using concepts from
neural population approaches.

A Neural Network Model of Reference
Frame Transformations

To ground flexible spatial language behaviors in perceptual
processes requires specifying how a neural system perceives ob-
jects in a retinal frame and then maps these neural patterns into an
object-centered frame centered on a reference object. The second
class of exemplary models we consider specifies a neural mecha-
nism for reference frame transformations. The first such model
was proposed by Zipser and Andersen (1988). They described a
mechanism for mapping location information from a retinocentric
to a head-centered representation, based on the observed properties
of gain-modulated neurons in the parietal cortex. Pouget and
Sejnowski (1997) presented a formalized version of this model
(described as a radial basis function network), which was later
extended to explain multisensory fusion (Deneve, Latham, &
Pouget, 2001; for review, see also Pouget, Deneve, & Duhamel,
2002). We will look at the Deneve, Latham, & Pouget (2001)
model more closely because it combines several characteristics
that make it relevant for the domain of spatial language. In par-
ticular, it can be generalized to object-centered representations,2

and it is flexible with respect to the direction of reference frame
transformation, which offers insights into how different spatial
language tasks may be solved within a single architecture.

The neural network model by Deneve, Latham, & Pouget (2001)
describes the coordination between three different representations
dealing with spatial information: an eye-centered layer, which
represents the location of a visual stimulus in retinal coordinates;
an eye-position layer, which describes the current position of the
eye (i.e., the gaze direction) relative to the head; and a head-
centered layer, which represents the location of a stimulus in
head-centered coordinates. Each of these layers can serve both as
an input and as an output layer. In addition, there is an intermediate
layer, which is reciprocally connected to each of the input/output
layers and conveys interactions between them. All information
within this network is represented in the form of population codes.
Each layer consists of a set of nodes with different tuning func-
tions, that is, each node is most active for a certain stimulus
location or eye position, respectively, and its activity decreases
with increasing deviation from that preferred value.

2 A related model by Deneve and Pouget (2003) deals explicitly with
object-centered representations, but only in terms of rotations of the ref-
erence frame. In addition, that model does not show the same flexibility as
the one discussed here, making it a less suitable starting point for our task
of explaining flexible spatial language behaviors.
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Initially, the activity of all input/output layers reflects the avail-
able sensory information. For example, let us assume that we have
the location of a visually perceived object encoded in the eye-
centered layer (by a hill of activity covering a few nodes) and that
we are also given the current eye position, but we have no explicit
information about the location of the object in the head-centered
coordinate frame. In this case, the eye-centered and eye-position
layers will project specific input into the intermediate layer, while
the head-centered layer provides no input. The intermediate layer
combines all inputs in a higher dimensional representation and
projects back to all input/output layers. In an iterative process, the
nodes in the head-centered layer are then driven by this activity in
the intermediate layer to form a representation of the object loca-
tion relative to the head, while the initial representations in the
eye-centered and eye-position layers are retained and sharpened.

Because all connections in the model are bidirectional, it can
flexibly be applied to a range of other tasks by simply providing
different initial activity patterns. For any combination of inputs,
the mechanism will work toward producing a consistent set of
representations, filling out missing information, solving ambigui-
ties between different inputs or sharpening the representations in
all input/output layers. In the context of spatial language, an
analogous mechanism can be used to combine the three variables
of target position, reference position, and the spatial relation be-
tween the two. This might, for example, enable a system to locate
a target item in a visual, scene given a reference object, and a
spatial relation or to determine a spatial relation, given the refer-
ence object and the target object.

The Deneve, Latham, & Pouget (2001) model more closely
because model offers a flexible transformation mechanism. It also
captures a range of neural data. Nevertheless, it does not capture
the behavior of people—the model does not generate overt behav-
ior. To use a mechanism like this in a model of human spatial
language behaviors, we need additional structures that process a
diverse array of verbal and visual information (Chambers, Tanen-
haus, Eberhard, Filip, & Carlson, 2002; Spivey, Tyler, Eberhard, &
Tanenhaus, 2001; Tanenhaus, Spivey-Knowlton, Eberhard, & Se-
divy, 1995), provide the appropriate spatial representations, link
them to spatial term semantics, and generate the required re-
sponses. We describe a model that accomplishes this goal and
builds on the insights of AVS and the Deneve, Latham, & Pouget
model below.

A Neurobehavioral Model Using Dynamic
Neural Fields

In this section, we introduce a dynamic neural field model that
bridges the gap between brain and behavior, providing both a
neural process account and strong ties to flexible, observable
spatial language behaviors. We begin by describing each core
element in the model. We then test the viability of our system by
demonstrating how a suite of spatial language behaviors arise from
the same unified model using a single parameter set.

Dynamic Neural Fields

Dynamic Neural Fields (DNFs) are a class of biologically plau-
sible neural processing models (Amari, 1977; Wilson & Cowan,
1973). They are based on the principle that biological neural

systems represent and process information in a distributed fashion
through the continuously evolving activity patterns of intercon-
nected neural populations. The Dynamic Field Theory (e.g., Erl-
hagen & Schöner, 2002) builds upon this principle by defining
activation profiles over continuous metric feature dimensions (e.g.,
location, color, orientation), emphasizing attractor states and their
instabilities (Schöner, 2008). Activations within dynamic fields are
taken to support a percept or action plan (Bastian, Schöner, &
Riehle, 2003) and thus incorporate both representational and dy-
namical systems properties (Schöner, 2008; Spencer & Schöner,
2003). Because an activation field can be defined over any metric
variable of interest, this approach allows for a direct, neurally
grounded approach to understanding the processes that underlie a
broad range of behaviors (for recent empirical applications, see
Johnson, Spencer, & Schöner, 2008; Lipinski, Simmering, John-
son, & Spencer, 2010; Lipinski, Spencer, & Samuelson, 2010a;
Schutte, Spencer, & Schöner, 2003; Spencer, Simmering, &
Schutte, 2006; Spencer, Simmering, Schutte, & Schöner, 2007).

Neural populations processing metric features may represent a
theoretically infinite number of feature values (e.g., angular devi-
ations of 0°–360°). We therefore describe the activity level of the
neural population as a time-dependent distribution over a contin-
uous feature space (see Figure 1a). This activation distribution,
together with the neuronal interactions operating on it, constitutes
a Dynamic Neural Field. One may think of this field as a topo-
graphical map of discrete nodes, in which each node codes for a
certain feature value (analogous to the representations used by
Pouget and colleagues). Conceptually, however, we treat the ac-
tivity pattern in the field as a continuous distribution.

Activity patterns in a DNF change continuously over time and
are coupled to external input (e.g., sensory input). In a field
defined over visual space, for example, presentation of a visual
stimulus will give rise to increased activation at the stimulus
position (see Figure 1a). With sufficient activation, stimulated
nodes will begin to generate an output signal and interact with
other nodes in the field. These interactions generally follow the
biologically plausible pattern of local excitation and lateral inhi-
bition (Wilson & Cowan, 1973) shown in Figure 1b. Local exci-
tation means that activated nodes stimulate their neighbors, leading
to a further increase in the localized activation. Lateral inhibition,
on the other hand, means that activated nodes inhibit distant
neighbors, thereby reducing activation in the field (see Figure 1b).

Figure 1. Dynamic neural fields. Dynamic neural fields represent metric
information through a continuous distribution of activity (gray line) over a
feature space (plotted along the x-axis). Panel (a) shows a hill of activity
formed by localized external input. Panel (b) illustrates the effects of the
local excitation/lateral inhibition interactions in the field triggered when
the input drives activity beyond a (smooth) output threshold (dashed line).
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Together, these interactions promote the formation of a single
activity peak. Once a peak is formed, these interactions work to
stabilize the peak against fluctuations.

System Architecture

Activation peaks in DNFs form the basis for cognitive decisions
and representational states (Spencer, Perone, & Johnson, 2009;
Spencer & Schöner, 2003). To explain complex spatial language
behaviors, we use an architecture composed of multiple DNFs,
each of which takes a specific role in the processing of visual and
semantic information. In this architecture, local decisions—peaks
within specific DNFs—are bound together by means of forward
and backward projections between them.

Most of the DNFs represent spatial information. Fields that are
close to the visual input represent the two-dimensional space of the
input image (corresponding to the retinal image in the human
visual system). At a later stage, spatial information is transformed
into an object-centered reference frame using a mechanism in-
spired by the Deneve, Latham, & Pouget (2001) model. The
object-centered representation is then used to anchor spatial se-
mantics in the visual scene. We further represent object color as a
simple visual feature that is used to identify the items involved in
a task (e.g., “which object is to the right of the green object?”; see
General Discussion for extension to other features). One set of
DNFs in our architecture combines color and spatial information,
thus allowing us to “bind” an object’s identity to a location and
vice versa. Color, as well as different spatial semantics, are treated
as categorical features and are represented by discrete nodes in-
stead of continuous fields.

The visual input for our system comes either from camera
images of real-world scenes or from computer-generated sche-
matic images as used in psychophysical experiments. The camera
images are taken with a Sony DFW-VL500 digital camera
mounted on an articulated robot head, which is part of the Coop-
erative Robotic Assistant (CoRA) platform (Iossifidis et al., 2004).
Our model is able to flexibly solve different tasks defined by a
sequence of context-carrying and control inputs, which reflect the
components of verbal task information. Figure 2 shows a sche-
matic overview of our architecture. We describe each component
in turn below.

Color-space fields. A set of color-space fields (see Figure 2c)
provides a simplified, low-level representation of the visual scene.
We use a fixed set of discrete colors; and, for each of them, a DNF
is defined over the two-dimensional space of image positions.
Each point in the image that contains salient color information
provides a local excitatory input to the color-space field of the
matching color. The resulting activity pattern in this set of fields
then reflects the positions and shapes of all colored objects in the
scene.

Color term nodes. Each of the color-space fields is con-
nected to a single color term node (see circles, Figure 2b) which
receives the summed output from its associated field. Each node is
thereby activated by any object-related activity in the field inde-
pendent of object position. In turn, the output of the color term
node homogeneously activates, or “boosts,” the color-space field
to which it is coupled. The color term nodes can also be activated
by direct external input, corresponding to verbal information iden-
tifying an object in the task (e.g., “the green object”). Likewise,

system responses regarding object identity are read out from these
nodes. Each color term node therefore functions as a connectionist-
style, localist color term representation. To produce unambiguous
responses, each node has a self-excitatory connection as well as
inhibitory connections with the remaining nodes. These interac-
tions amplify small differences in activation level and ensure that
only a single node is strongly active at a given time.

Target field. The target field (see Figure 2d) represents the
position of the target object, that is, the object whose location is
described by the spatial term in a given spatial language task. Like
the color-space fields, the target field is defined over the same

Figure 2. Architecture overview. The camera image (a) is the primary
input to our mechanism. All elements shown in gray below it are dynamic
neural structures: Gray circles are discrete nodes representing color terms
(b), spatial relations (h), or spatial terms (i) that follow the same dynamic
principles as the fields. The transformation field (f) is a higher dimensional
dynamic neural field. Excitatory interactions between elements are indi-
cated by arrows. These interactions are typically bidirectional in our
architecture, shown as double arrows. Gray rectangles (c, d, e, and g) are
dynamic neural fields defined over a two-dimensional space. Diamond-
shaped links (d and e) represent inhibitory projections. The connections
between the object-centered field (g) and the spatial relation nodes (h)
depend on custom semantic weights, shown exemplarily for the above
relation (j). The semantic weight patterns describe how well a certain
position in the object-centered field matches the meaning of a spatial term
(darker colors mean higher weights).
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two-dimensional space of image (“retinal”) positions. Each color-
space field projects to the target field in a topological fashion. This
means that output from one position in a color-space field excites
the corresponding position in the target field. The output from the
target field is projected back into each color-space field in the
same fashion and, thus, increases activation at the corresponding
location. In addition, the output from the target field mildly sup-
presses all activity in those color-space field locations that do not
match the active target field regions. This combined excitation and
inhibition enhances activation at the target position while reducing
activation at competing “distractor” locations. The target field is
also bidirectionally coupled to the transformation field (see be-
low).

Interactions within the target field are governed according to a
strong local excitation/ lateral inhibition function. This ensures that
only a single activity peak forms in this field, even if it receives
multiple target location inputs from the color-space fields. This
peak formation corresponds to the selection of a single target
object. Once the selection decision is made, the interactions within
the field stabilize the peak.

Reference field. The reference field represents the position of
the reference object identified by the spatial term (see Figure 2e).
Like the target field, it receives topological input from all color-
space fields and projects back to them. The reference field is also
similarly coupled bidirectionally to the transformation field (see
below) and it incorporates the same strong interaction function as
the target field, leading to selective behavior. Finally, there is a
local inhibitory connection between the target and referent fields
(diamond-shaped connections in Figures 2d and 2e). Thus, high
activity at one position in the target field suppresses the corre-
sponding position in the reference field (and vice versa). This
ensures that a single item cannot act as both target and referent.

Object-centered field. The target and reference fields con-
tain all the location information needed for our tasks. However,
these locations are defined in image-based (i.e., retinal) coordi-
nates. Consequently, one cannot easily read out the position of the
target object relative to the reference object nor can one process an
object-centered location description. We therefore introduce the
object-centered field (see Figure 2g). This field is defined over the
two-dimensional space of positions relative to the reference object
location.

The object-centered field receives input from, and projects back
to, the transformation field. It is through this field that the object-
centered field interacts with the target and reference fields. In
addition, the object-centered field provides input to, and receives
input from, the spatial relation nodes (see Figure 2h; see below).
The object-centered field does not use strong neural interactions;
thus, the field holds broadly distributed activity patterns instead of
narrow peaks.

Spatial relation nodes. Activity in different parts of the
object-centered field directly corresponds to different spatial rela-
tionships between the target and reference objects. The spatial
relation nodes capture the categorical representation of these rela-
tionships. The current framework has one discrete node for each of
the four spatial terms defined here: left, right, above, and below
(see Figure 2h). Each node is bidirectionally connected to the
object-centered field. The pattern of connection weights between
spatial term nodes and the field is shown for one exemplary
relation—the above relation—in Figure 2j. The connection pattern

is determined from the combination of a Gaussian distribution in
polar coordinates (compare O’Keefe, 2003) and a sigmoid (step-
like) function along the vertical axis. Additional relational terms
beyond the four projective relations may easily be added to this
network (see the General Discussion section).

Each node receives summed, semantically weighted output from
the object-centered field. Conversely, node activation projects
back to the object-centered field according to the same semantic
weights. The spatial relation nodes have moderate self-excitatory
and mutually inhibitory interactions. They produce a graded re-
sponse pattern reflecting the relative position of the target to the
reference object. For example, both the right and above nodes may
be activated to different degrees if the target is diagonally dis-
placed from the reference object.

Spatial term nodes. The spatial term nodes turn the graded
activation patterns of the spatial relation nodes into a selection of
a single term (see Figure 2i). There is one node for each of the four
spatial terms. Each spatial term node receives excitatory input
from the corresponding spatial relation node and projects back to
it in the same fashion. There are strong lateral interactions among
the spatial term nodes (self-excitation and global inhibition), lead-
ing to pronounced competition between them. In effect, only one
of them can be strongly activated at any time, even if the activity
pattern in the less competitive spatial relation nodes is ambiguous.
Like the color term nodes, the spatial term nodes can be activated
directly by external input (e.g., verbal instruction) and can be used
to generate overt responses.

Reference frame transformation field. The transformation
field (see Figure 2f) converts location information between the
image-based and object-centered reference frames—it is at the
heart of our framework. The transformation mechanism that we
employ is similar to the one described by Deneve, Latham, &
Pouget (2001). In our specific instantiation, the transformation
field is defined over the space of all combinations between target
and reference positions. We first describe the transformation pro-
cess with a simplified case where the target, reference, and object-
centered fields are all one-dimensional and the transformation field
is two-dimensional (see Figure 3).

The target field in Figure 3 is shown aligned with the horizontal
axis of the transformation field and defines the target location in
the image-based frame. The reference field is shown aligned with
the vertical axis of the transformation field and defines the refer-
ence location in the image frame. Each activated node in the
reference field drives the activity of all nodes in the transformation
field that correspond to that same reference position, that is, all
nodes in the same horizontal row in Figure 3. This gives rise to a
horizontal activity ridge. The input from the target field acts
analogously, forming a homogeneous, vertical activity ridge. The
intersection of these two ridges leads to an increased activity level,
and substantial output from the transformation field is generated
only at this intersection. The transformation field employs mod-
erate global inhibition that softly normalizes overall field activity.

What does the intersection point in the transformation field
signify? It captures the target and reference locations in a single,
combined representation. This representation implicitly yields the
specific spatial relation between target and reference objects,
which is simply the difference between the two locations. Given
this, we can implement the transformation by setting up an excit-
atory connection from every point in the transformation field to the
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position in the object-centered field that corresponds to this dif-
ference. In other words, all target-referent location combinations
that have the same position difference (say, �30° of visual angle)
have an excitatory connection to the place in the object-centered
field which represents that specific relation. This gives rise to a
simple geometric connection pattern in which all points in the
transformation field that correspond to the same target-referent
relation lie on a diagonal line. This can be seen as follows: If the
reference point on the vertical axis moves by a certain value, the
target position on the horizontal axis must move by that same
value to keep the relative position constant.

In our framework, this transformation field is dynamically and
bidirectionally coupled to the target, reference, and object-centered
fields. Transformations are, thus, not fixed to a single directional

flow. Specifically, the object-centered field projects activation
back into the transformation field along the same diagonal axis
from which it receives input (see diagonal activity ridge, Figure
3c). In turn, the transformation field projects back to the target and
reference fields along the vertical and horizontal axes, respec-
tively. Thus, if a reference position is given together with a desired
relative position in the object-centered field, the transformation
field will activate the appropriate region in the target field. In the
context of spatial language, this means that a reference object and
a spatial term can be used together to specify a target location. This
multidirectionality does not require any switching in the interac-
tions between these fields. Instead, the dynamic coupling between
them smoothly drives the activation in the fields toward a consis-
tent pattern (analogous to Deneve, Latham, & Pouget, 2001). This
dynamic flexibility allows for the generation of different spatial
language behaviors within a single, unified architecture.

To use this transformation mechanism with actual image posi-
tions, we extend the target, reference, and object-centered repre-
sentations to two dimensions. The transformation field in our
implementation is then defined over a four-dimensional space,
spanning two dimensions of target position and two dimensions of
reference position. Functionally, the mechanism is equivalent to
the simplified version described here.

Demonstrations

In this section, we detail five demonstration sets testing our
system’s capacity for flexible behavior. In Demonstration 1, the
system must select a spatial term describing the relation between a
specified target and reference object (“Where is the green item
relative to the red item?”). Demonstration 2 substantiates the
plausibility of this spatial semantic processing by simulating em-
pirical above ratings performance from Experiments 1, 2, and 4 of
Regier and Carlson (2001). In Demonstration 3, the system selects
the color of the target object given a reference object and a
descriptive spatial term (“Which object is above the blue item?”).
In Demonstration 4, the system must describe the location of a
specified target object by selecting both a reference object color
and a descriptive spatial term (“Where is the green item?”). Dem-
onstration 5 substantiates the plausibility of this spatial description
process by simulating empirical results from the reference object
selection task reported in Experiment 2 of Carlson and Hill (2008).
The different types of information flow in these demonstrations
capture key aspects of the apprehension of spatial relations and the
use of spatial language in real-world communication.

Demonstrations 1, 3, and 4 use images of real-world scenes of
a tabletop workspace containing three everyday objects of com-
parable size. In Demonstrations 2 and 5, we use computer-
generated colored rectangles as visual inputs to allow an enhanced
degree of stimulus control. Both types of stimuli are processed in
precisely the same way in our system. We use the same architec-
ture with identical parameter values across all five demonstration
sets. To define each task and generate responses on each trial,
additional inputs that reflect the task structure were applied se-
quentially to specific elements of the system. We assume that the
required sequence of inputs is generated from a semantic analysis
of the verbally posed request, for example, “What is to the right of
the blue item?”

Figure 3. Reference frame transformation for one-dimensional inputs
through a two-dimensional transformation field. The target field (a) and the
reference field (b) represent object position in the image frame. The
transformation field (c) is defined over the space of all combinations of
target and reference position and it links the target and reference field with
the object-centered field (d). The activity distribution within the transfor-
mation field is indicated by different shades of gray, with darker shades
meaning higher activity. The target field is aligned with the horizontal
target position axis of the transformation field. The reference field is
aligned with the vertical reference position axis (this axis is inverted for
reasons of visualization). The object-centered field is shown tilted by 45°.
All projections between a one-dimensional field and the transformation
field run orthogonally to the position axis of the respective one-
dimensional field (bidirectional dashed arrows). The inputs from the three
one-dimensional fields produce the three visible activity ridges in the
transformation field. The output from the intersection point of these ridges
projects back to the peak positions in the one-dimensional fields. The
diagonal projection to the object-centered field connects all combinations
of target and reference position to the matching relative position in the
object-centered field. The dotted line in the object-centered field represents
the center of this field, which is by definition aligned with the reference
object.
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We discriminate between two types of task information. The
first type provides concrete content information, specifying either
the identity of an object (“the blue item”) or a spatial relationship
(“to the right”). This can be conveyed to our system by activating
a single color or spatial term node. The second type of information
specifies the roles of these content-carrying inputs and the goal of
the task. Both are conveyed in speech through sentence structure
and keywords (such as what, where, of, and “relative to”). This
type of task information is transmitted to the system in the form of
homogeneous boost inputs, which raise the activity level of a
whole field or a set of nodes. These boosts do not supply any
specific information about object locations or identities, but they
structure the processing within the dynamic architecture. The
responses for each task are read out from the color, the spatial
term, or the spatial relation nodes after a fixed number of time
steps (which is identical for all tasks), when the sequence of task
inputs is completed and the dynamical system has settled into a
stable state.

A detailed description of the input sequences used for each task
is given below. In most cases, this input sequence approximately
follows the typical order in which pieces of information are pro-
vided in spatial language utterances. Although we use a fixed
sequence here, our system has a high degree of flexibility with
respect to the exact timing and the order of different inputs. We
note, however, that the semantic analysis of the verbal information
that leads to the input sequence is a complex cognitive task of its
own that we do not address. In our view, the ability to create an
appropriate sequence of content-carrying and control inputs is
what constitutes an understanding of a task, something which is
beyond the scope of this article. Note that the same sequences or
sequence elements may also be used in conjunction with our
architecture to solve other spatial cognition tasks that do not
necessarily involve any verbal input.

Demonstration 1: Spatial Term Selection

The selection of a spatial relation term is a critical component of
any spatial description (e.g., Franklin & Henkel, 1995; Hayward &
Tarr, 1995). Demonstration 1 shows how our system handles
spatial term selection. We presented a red tape dispenser, a small
green flashlight, and a blue box cutter aligned horizontally in the
image plane (see Figure 4a). In addition, we presented a sequence
of task inputs corresponding to the question “Where is the green
flashlight relative to the red tape dispenser?” To respond correctly,
the system must activate the right spatial term node. Note that this
response can only be obtained if the flashlight’s position is taken
relative to the specified reference object: The green flashlight is
neither to the right in the image (it is slightly to the left of the
center) nor to the right of the alternative referent, the blue box
cutter.

Results and discussion. The three objects in the workspace
generate activation profiles in each of the respective color-space
fields at their location in the image space (see Figure 4b). This
activity is driven by the continuously provided visual input. Such
image-based color-space field activation forms the basis of the
simple neurally grounded scene representations used in all tasks.
The color-space fields project weakly to the target and the refer-
ence fields as well as to the color term nodes, although the activity
in these parts of the system remains well below the output thresh-

old. The remaining downstream fields therefore remain silent as
well.

We begin the task by specifying the green flashlight as the target
object. To do this, we activate the green color term node, which
uniformly raises the activation of the green color-space field (see
Figure 4c). This amplifies the output at the location of the green
flashlight (see Figure 4c). At the same time, we uniformly boost
the target field. The target field receives positive activation from
the color-space fields, and the boost leads to the formation of a
peak at the location of the strongest input. In this case, then, the
target field peak corresponds to the location of the green item.
After the target position is set, the green node input is turned off and
the target field is de-boosted to an intermediate resting level. The
target object peak is nonetheless stably maintained because of the
neural interactions within the field. This stabilized peak also inhibits
the corresponding region of the reference field (see the slightly dark-
ened reference field regions in Figures 4c and 4d). This prevents the
selection of that same location as the reference position.

Having presented the target item information (i.e., “Where is the
green flashlight?”), we next provide the reference object informa-
tion by activating the red color term node and boosting the refer-
ence field (see Figure 4d). The activation of the color term node
homogeneously increases the red color-space field activation. As a
result, the activation profile from the red tape dispenser is in-
creased and the boosted reference field forms a robust peak at the
dispenser’s location (see Figure 4d). Analogous to the target field,
the reference field peak stably represents the reference object
location even after we de-boost the field to an intermediate resting
level and remove the red node input. We note that the order in
which target and reference objects are defined can be reversed in
this mechanism without changing the outcome, thus providing a
fair degree of flexibility in line with the variability of natural
communication.

With peaks established in both the target and reference fields,
these fields now provide strong input into the transformation field
(see arrows, Figure 4e). A high level of activation, therefore, arises
autonomously at the “intersection” of these inputs in the transfor-
mation field. This intersection represents the combination of the
target and reference object positions in a single, four-dimensional
representation (not shown). From the intersection point, activation
is propagated to one location in the object-centered field. This
location represents the target object’s position relative to the
reference object. An activity peak forms autonomously at this
location in the object-centered field (see Figure 4e).

The formation of the object-centered peak propagates activation
to the spatial relation nodes. Because the peak has formed in the
right part of the object-centered field, it most strongly activates the
right node (see darker shading of the right relation node, Figure
4e). The spatial term nodes receive input from the spatial relation
nodes. In the present case, the right node has the highest activity,
but the activity level is low overall. To unambiguously select one
spatial term, we homogeneously boost the spatial term nodes to
prompt the system to respond. Due to the strong self-excitatory and
global inhibitory interactions among nodes, the right node be-
comes more strongly activated and suppresses all other nodes (see
Figure 4f), thus producing the correct response for the task.

It is important to observe that this spatial term selection behav-
ior does not depend on a target object location that perfectly
corresponds to a single spatial term. For example, in Figure 5 we
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used the same task structure as the preceding demonstration, but
shifted the flashlight (see Figure 5a) to a position that is both above
and to the right of the red tape dispenser; it is neither perfectly to
the right nor perfectly above the red reference object. As before,
with the target and reference object locations established, a peak
representing the target object relation forms in the object-centered
field. This peak, which is now to the right and above the center of

the field, provides comparable activation input into both the right
and above spatial relation nodes (see Figure 5b). Nevertheless,
after boosting the spatial term nodes, the slightly elevated activa-
tion of the right node together with the competitive inhibitory
interactions among nodes leads to the complete suppression of the
above node and, ultimately, the selection of right as the descriptive
spatial term (see Figure 5c).

Figure 4. Activation sequence for spatial term selection in Demonstration 1. Panel (a) shows the camera input
for this task. Panels (b)–(f) show activity distributions at different points in the task. Field activity levels are
color-coded (dark blue � lowest activity, dark red � highest activity). Activity of discrete nodes (circles) is
coded by lightness (darker shades � higher activity). The activity in the high-dimensional transformation field
(grey rhombus) is not represented. Bold connections with arrows between the fields highlight dominant
directions of information flow in the task. Block arrows indicate current task input. Panel (b): the scene
representation in the color-space fields before the task. Panel (c): target object selection by activating the green
color node and boosting the target field. Panel (d): reference object selection by activating the red color node
and boosting the reference field. Panel (e): emergence of a peak in the object-centered field representing the
target object location relative to the selected reference object. The right spatial relation node activity is also
increased (dark gray node). Panel (f): boost of spatial term nodes to prompt the response right (box).
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Note that although the system dynamics currently force the
selection of only a single spatial term, the activation of multiple
spatial relation nodes signals the potential for the system to gen-
erate multiple terms (e.g., “to the right and above”; see, e.g.,
Carlson & Hill, 2008; Hayward & Tarr, 1995). Thus, while we
have not yet implemented a sequencing mechanism that permits
the sequential selection of multiple spatial terms, our model al-
ready incorporates the semantic sensitivity needed to structure
such a sequence.

Demonstration 2: Simulating Empirical Spatial
Term Ratings

In this demonstration, we test whether the neural dynamic
system which accomplished spatial term selection in Demon-
stration 1 can also account for the details of human spatial term
use. To this end, we examine the model’s performance in a set
of spatial language ratings tasks, in which the system rates the
applicability of a spatial term to the relation between two items
in a visual scene. Ratings performance represents a key test of
this model because such tasks have played a prominent role in
spatial semantic processing research to date (e.g., Carlson-
Radvansky & Logan, 1997; Carlson-Radvansky & Radvansky,
1996; Coventry, Prat-Sala, & Richards, 2001; Hayward & Tarr,
1995; Lipinski, Spencer, & Samuelson, 2010b). We simulate a

subset of the ratings tasks that Regier and Carlson (2001) used
to establish AVS.

Method.
Materials. We used computer-generated scenes containing

one larger, green reference object in a central location, and a
smaller, red target object. The target was located at different
positions around the referent. The shape and placements of target
and reference objects were based on the stimulus properties re-
ported for Experiments 1, 2, and 4 from Regier and Carlson
(2001). Note, however, that we had to modify the sizes of some
objects given the relatively simple visual system that we used. This
ensured that small items could still generate a sufficient response
from the color-space fields, while large items did not dominate the
system’s response for color terms. Furthermore, we had to scale
the distances between items in some instances to fit the object
array within the fixed dimensions of our input image. These
modest constraints could certainly be relaxed with a more sophis-
ticated visual system. That said, we viewed the simplicity of the
visual system as a plus because it highlights that our model does
not depend on sophisticated, front-end visual processing to show
the types of flexibility shown by humans.

Procedure. Each ratings trial began by first establishing the
target and reference object locations as described in Demonstration
1. In contrast to Demonstration 1, however, we did not boost the
spatial term nodes here, and we did not use their output as the basis
for the response. Instead, we recorded the output of the spatial

Figure 5. Activation sequence for spatial term selection in Demonstration 1 with imperfect correspondence to
spatial terms. Panel (a) shows objects in the camera input. Panels (b) and (c) show activity distributions at
different points in the task. Panel (b): With target object (green flashlight) and reference object (red tape
dispenser) already established, a peak representing the target object relation forms in the object-centered field.
The peak provides comparable activation input into both the right and above spatial relation nodes (dark gray
nodes). Panel (c): Boosting the spatial term nodes prompts competition between these nodes, leading to the
generation of the response right (box).
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relation nodes at the end of the demonstration (using the same total
number of iterations as above). We then scaled this output (which
is in the range of 0 to 1) to the range used in the experiments (0 to
9) to obtain a rating response.

Demonstration 2a: Sensitivity to proximal orientation.
This demonstration had two goals. The first was to test whether the
same model that produced the spatial term selection behaviors in
Demonstration 1 could also capture empirical spatial language
ratings performance. In particular, above ratings should be highest
for locations lying along the positive region of the vertical axis,
systematically decrease as the target location deviates from the
vertical axis, and then sharply decline for targets at or below the
horizontal axis.

The second goal was more focused. Recall that Regier and
Carlson (2001) observed that there are two distinct orientation
measures that influence spatial language ratings data. The first is
proximal orientation, the orientation of a vector that points to the
target from the closest point within the reference object (shown as
gray lines in Figure 6). The second is center-of-mass orientation,
the orientation of a vector that connects the reference object’s
center of mass with the target (black lines in Figure 6).3 The
influence of the proximal orientation was investigated in Regier
and Carlson’s Experiment 1. In this task, individuals rated the
relation between a small target object and a rectangular reference
object. Critically, this rectangle was presented in either a horizon-
tal or a vertical orientation. By rotating the rectangular reference
object but holding the target object location constant, they were
able to change the proximal orientation without altering the center-
of-mass orientation (compare Figures 6a and 6b). Empirical results
showed that ratings for the vertical terms (above, below) in the tall

condition were lower than those in the wide condition. Conversely,
ratings for the horizontal terms (left, right) were higher in the tall
condition. Thus, spatial term ratings were sensitive to changes in
proximal orientation. Here we test whether our model is also
sensitive to changes in proximal orientation.

Materials. The input image was divided into a (hypothetical)
5 � 5 grid of square cells (with borders remaining on the left and
on the right portion of the image). The rectangular reference object
was centered in the central cell of the grid. The reference object
was either vertically oriented (Tall condition) or horizontally ori-
ented (Wide condition). The small square target object was placed
centrally in each of the other cells in successive trials.

Results. Table 1 shows the model’s above ratings for each
position of the target object for each of the two orientation con-
ditions. Results for the Tall condition are broadly consistent with
the Experiment 1 response profile (in parentheses) reported by
Regier and Carlson (R2 � .98, RMSD � .55). In particular, ratings
are highest for target locations along the positive portion of the
vertical axis, systematically decline as the target deviates from this
axis, and then sharply decline for targets placed along the hori-
zontal axis. The model’s ratings for the Wide condition also follow
the empirical profile (in parentheses; R2 � .97, RMSD � .6).

We also tested whether the ratings were sensitive to changes in
proximal orientation. As in Regier and Carlson (2001), we com-
pared the mean above ratings for the oblique target locations
between the Wide and the Tall condition. If our model is sensitive
to changes in proximal orientation, then above ratings for the
oblique target locations in the Wide condition should be higher
than those in the Tall condition. Results showed a mean rating of
6.825 for the Wide condition and a mean of 6.75 for the Tall
condition, a difference of .075. Thus, our neural dynamic frame-
work is sensitive to changes in proximal orientation. Note that the
magnitude of this difference was comparable to that for the em-
pirical data (.093) and the AVS model (.092).

Demonstration 2b: Sensitivity to center-of-mass orientation.
Regier and Carlson (2001, Experiment 2) also showed in a very
similar setting that spatial term ratings were sensitive to change in
the center-of-mass orientation. As before, the rectangular reference
object was rotated into either a Wide or a Tall orientation. In this
task, however, the placement of the target object within a cell was
varied between the Tall and Wide conditions to maintain a con-
stant proximal orientation (illustrated in Figures 6c and 6d; com-
pare gray line orientations). As a result, the center-of-mass orien-
tation between target and reference object changes between the
two conditions. In general, the center-of-mass orientation becomes
more vertically aligned in the Tall condition compared to the Wide
condition (compare black lines, Figures 6c and 6d). Regier and
Carlson showed that this led to higher mean above ratings for the
Tall condition. Here we test whether our model shows the same
sensitivity to changes in center-of-mass orientation.

Materials. Stimuli were the same as in Demonstration 2a with
one exception. Here, target placements were varied within each

3 Regier and Carlson (2001) treated the target as a single point and
therefore did not specify where the vector ends within the target’s area. For
the stimuli that we use, it does not make a qualitative difference whether
the end point is at the center of the target or at its closest point to the
reference object for the two measures of orientation.

Figure 6. Proximal orientation vectors (gray lines) and center-of-mass
orientation vectors (black lines). Panels (a) and (b) depict a change in the
proximal orientation vector from the Wide (a) to the Tall (b) reference
object condition as in Demonstration 2a, while the center-of-mass orien-
tation remains the same. Panels (c) and (d) depict a change in the center-
of-mass orientation vector from the Wide (c) to the Tall (d) reference
object condition while the proximal orientation is held constant, corre-
sponding to the situation in Demonstration 2b.
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cell between the Tall and Wide conditions such that the proximal
orientation between the target and reference object was held con-
stant across rotations of the referent. The center-of-mass orienta-
tion, therefore, varied across rotations of the rectangle.

Results. Table 2 shows the above ratings results. As before,
the simulated ratings followed the empirical profile (Tall: R2 �
.99, RMSD � .65; Wide: R2 � .96, RMSD � .92). To test whether
our model captures sensitivity to changes in the center-of-mass
orientation, we compared the mean ratings for the oblique target
locations. If our model is sensitive to these changes, then above
ratings for the oblique target locations in the Tall condition should
be higher than those in the Wide condition. Results showed a mean
rating of 7.63 for the Tall condition and a mean of 5.99 for the
Wide condition, a difference of 1.64. Our model is therefore
sensitive to changes in the center-of-mass orientation, consistent
with the empirical data. Note that the obtained effect is larger than
that reported by Regier and Carlson (2001) in Experiment 2 (0.11).

Demonstration 2c: Center-of-mass versus reference object
midpoint. In Experiment 3 of Regier and Carlson (2001), wider
rectangles were used to probe different regions directly above the
referent. Results replicated the center-of-mass effect. However, the
midpoint and center of mass were at the same location. Thus, in
Experiment 4, Regier and Carlson separated out the possible
contribution of the midpoint to the center of mass effect by
replacing the wide rectangle with a wide triangle and probing
ratings at three critical points4 (A,B,C; see Figure 7). If the target’s
position relative to the midpoint was the critical relation, the above
ratings should have peaked at B (right above the midpoint) and
show comparably lower values for A and C. Instead, empirical
above ratings were similar for positions A and B and lower for
location C, consistent with a dominant influence of the center-of-
mass orientation and the predictions of the AVS model. Here we
test whether our neural dynamic system can simulate these results.

Method. We used the same square targets as in Demonstra-
tions 2a and b, and a wide upright or inverted triangle as a
reference object. The referent’s size was smaller than that used in
the original experiment to accommodate the constraints of our

visual system. Nevertheless, all qualitative properties of the spatial
relationship between target and reference object for positions A to
C were retained.

Results. Figure 7 shows the results of the ratings simulations
and the empirical data (in parentheses). For the upright triangle
(see Figure 7a), Points A and B both yielded higher ratings than
Point C. Points A and B also yielded identical ratings and there
was no evidence of a ratings peak at Point B. Simulated ratings for
the inverted triangle also replicated this general pattern (see Fig-
ure 7b; combined R2� .79; RMSD � .65). The mean ratings for
Points A and B (averaged across the upright and inverted condi-
tions) exceeded Point C ratings by a mean of .28. This magnitude
is comparable to the mean difference observed in the empirical
data (.45).

Discussion. The results from Demonstrations 2a–c confirm
that our neural dynamic model can account for details of human
spatial language behavior. For the majority of the tested condi-
tions, the model provides a good quantitative fit to the empirical
data. To understand how sensitivity to the different orientation
measures arises in our framework, it is necessary to consider what
factors determine the precise position of the reference field peak.
The first and dominant factor is the position and shape of the
reference object in the scene, transmitted via the color-space fields.
Each point in the color-space fields that is sufficiently activated
creates an excitatory output signal to the reference field. These
signals are spatially smoothed by a Gaussian filter to reflect the
spread of synaptic projections in real neural systems. With every
point of the reference item projecting broadly into the reference
field, the resulting activity distribution in this field takes the form
of a smooth hill with its maximum marking the approximate
location of the reference item’s center of mass. The activity peak
in the reference field forms around this maximum, thus explaining

4 Regier and Carlson (2001) also included a D position located substan-
tially below the highest point of the referent, but they excluded this target
from all analyses. We, therefore, did the same.

Table 1
Demonstration 2a: Above Ratings for Each Position of the
Target Object in Simulations (Empirical Results in Parentheses)

Condition and row

Column

1 2 3 4 5

Tall
1 6.0 (6.7) 8.3 (7.4) 8.8 (8.9) 8.3 (7.4) 6.0 (6.8)
2 5.4 (5.6) 7.3 (6.6) 8.6 (8.9) 7.3 (6.2) 5.4 (6.0)
3 0.9 (0.9) 0.9 (0.9) 0.9 (1.0) 0.9 (1.3)
4 0.0 (0.6) 0.0 (0.3) 0.0 (0.6) 0.0 (0.4) 0.0 (0.6)
5 0.0 (0.4) 0.0 (0.4) 0.0 (0.3) 0.0 (0.6) 0.0 (0.3)

Wide
1 5.9 (6.5) 8.3 (7.3) 8.8 (8.9) 8.3 (7.0) 5.9 (6.9)
2 5.5 (6.2) 7.6 (6.4) 8.6 (8.4) 7.6 (6.9) 5.5 (6.2)
3 0.9 (0.7) 0.9 (0.8) 0.9 (0.7) 0.9 (0.8)
4 0.0 (0.4) 0.0 (0.5) 0.0 (0.3) 0.0 (0.4) 0.0 (0.3)
5 0.0 (0.4) 0.0 (0.4) 0.0 (0.4) 0.0 (0.3) 0.0 (0.3)

Note. Columns and rows refer to the 5 � 5 grid of square cells used in
Demonstration 2a. Empirical results from Regier and Carlson (2001, Ex-
periment 1).

Table 2
Demonstration 2b: Above Ratings for Each Position of the
Target Object in Simulations (Empirical Results in Parentheses)

Condition and row

Column

1 2 3 4 5

Tall
1 7.4 (6.6) 8.6 (7.3) 8.8 (8.7) 8.6 (7.7) 7.4 (6.9)
2 6.3 (6.3) 8.4 (6.7) 8.6 (8.6) 8.4 (7.0) 6.3 (6.3)
3 0.9 (1.2) 1.1 (1.1) 1.1 (1.5) 0.9 (1.2)
4 0.0 (0.3) 0.0 (0.4) 0.0 (0.5) 0.0 (0.4) 0.0 (0.4)
5 0.0 (0.5) 0.0 (0.4) 0.0 (0.3) 0.0 (0.3) 0.0 (0.5)

Wide
1 6.3 (6.7) 8.0 (7.0) 8.8 (9.0) 8.0 (7.4) 6.3 (7.1)
2 3.9 (5.9) 5.7 (6.8) 8.4 (8.9) 5.7 (6.7) 3.9 (6.4)
3 0.9 (1.1) 0.9 (1.2) 0.9 (1.2) 0.9 (1.6)
4 0.1 (0.6) 0.0 (0.6) 0.0 (0.4) 0.0 (0.7) 0.0 (0.7)
5 0.0 (0.6) 0.0 (0.5) 0.0 (0.9) 0.0 (0.9) 0.1 (0.9)

Note. Columns and rows refer to the 5 � 5 grid of square cells used in
Demonstration 2b. Empirical results from Regier and Carlson (2001,
Experiment 1).
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our system’s sensitivity to the center-of-mass-orientation observed
in Demonstrations 2b and 2c.

Importantly, however, the activity pattern in the reference field
still reflects the (smoothed) item shape, and it is still sensitive to
modulations of its input after the peak has formed. In particular,
peaks in the target and reference fields project broad activation
back to the color-space fields, strengthening the output from the
corresponding locations. This can be interpreted as a form of
spatial attention, directed to both the target and reference item. If
the two items are close to each other, the two peaks can interact via
this form of spatial attention. Specifically, in Demonstration 2a,
the back-projection from the target field can modulate the repre-
sentation of the reference object in the color-space fields, strength-
ening the output to the reference field from those parts that are
closest to the target. This has a biasing effect on the reference
peak, pulling it toward the target location. The position of this
peak, however, is still restricted by the rectangular shape of the
visual input, and it will move significantly only along the rectan-
gle’s longer axis (where the input gradient is more shallow). Thus,
if the reference object is horizontally oriented and the target is in
an oblique relation above it, the reference peak will drift horizon-
tally toward the target. This increases the verticality of the spatial
relation, thus leading to a higher above rating. In contrast, if the
reference object is vertically oriented, the peak will be pulled
upward in the same situation, thus decreasing the verticality and
the above rating. Note that this mechanism is largely analogous to
the explanation in the AVS model. In AVS, the location of the
target object determines the focus of spatial attention within the
reference object, and thereby determines how different parts of this
object are weighted in calculating the vector sum (a more general
comparison of our model to AVS is given in the General Discus-
sion).

Demonstration 3: Target Object Identification

To establish the behavioral flexibility of our neural system
beyond spatial term semantic behaviors, we test whether the sys-
tem can describe the target object at a location specified by a
spatial description. In particular, we placed a blue deodorant stick,
a red box cutter, and a green highlighter in the visible workspace
(see Figure 8a). We then provided task input specifying the blue
deodorant stick as the reference object and above as the spatial
relation, thereby posing the question “Which object is above the

blue deodorant stick?” To respond correctly, the system must
activate the red color term node.

Results and discussion. With the three items placed in the
workspace, we first specify the reference object information by
simultaneously activating the blue color term node and boosting
the reference field. This leads to a stronger activation at the blue
object’s location in the blue color-space field and the subsequent
formation of a peak at that location in the reference field (see
Figure 8b). We then remove the blue node input and de-boost the
reference field to an intermediate resting level. As before, this
reference peak is stably maintained at the position of the blue item
(see Figure 8c).

We then specify the desired spatial relation by simultaneously
activating the above spatial term node and boosting the object-
centered field (see Figure 8c). The spatial term node first activates
the corresponding spatial relation node, which further projects to
the object-centered field. This generates an activation profile in the
object-centered field that mirrors the above semantic weight pat-
tern (see Figure 8c). Because the object-centered field is simulta-
neously boosted, its output is amplified and its spatially structured
activity pattern is projected into the transformation field. Within
the transformation field, the input from the object-centered field
effectively intersects with the reference field input. Consequently,
the transformation field propagates activation into the target field
(see arrows Figure 8d). This input corresponds to a shifted version
of the above activity pattern in the object-centered field, now
centered at the reference object position in the image-based frame.
Consequently, the region in the target field above the blue deodor-
ant stick becomes moderately activated.

Next, we select a target object by homogeneously boosting the
target field (see Figure 8d). At this point, the target field receives
excitatory input from two sources: the broad spatial input pattern
from the transformation field and the more localized color-space
field inputs representing the object locations. When the target field
is boosted, the activity hills formed by the color-space field inputs
compete with each other through lateral interactions. Because the
activity hill corresponding to the red box cutter lies in the preac-
tivated region above the referent location, it has a clear competitive
advantage, leading to a peak at this location (see Figure 8d).

Once the target peak forms, it projects activation back into all
the color-space fields. This input is not sufficient to produce any
significant output by itself, but it amplifies the output of the red
box cutter’s representation in the red color space field. Conse-
quently, there is stronger input to the red color term node (see
Figure 8e). When we then uniformly boost all color term nodes to
generate an object description, this elevated activity provides a
competitive advantage for the red node (see Figure 8e), leading to
a red response.

Demonstration 4: Spatial Term and Reference
Object Selection

Demonstration 3 showed how specifying the reference object
and a spatial term can cue a form of attention to a semantically
defined spatial region. Spatial language tasks are not always so
well defined however. For example, if one wishes to describe the
location of a target object—a coffee cup—on a crowded desk, one
needs to select both the spatial term and the reference object. Does
the functionality of our neural system generalize to situations in

Figure 7. Demonstration 2c target object positions for the upright (a) and
inverted (b) triangle reference objects, with results of the ratings simula-
tions. Empirical data in parentheses from Experiment 4, Regier and Carl-
son (2001), Grounding spatial language in perception: An empirical and
computational investigation. Journal of Experimental Psychology: Gen-
eral, 130, p. 285. doi:10.1037/0096-3445.130.2.273
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which only a single piece of information—the identity of the target
item—is specified?

We tested this by presenting a stack of red blocks, a green
highlighter, and a stack of blue blocks (see Figure 9a), but only
designated the green item as the target object. The task structure is,
therefore, equivalent to asking “Where is the green highlighter?”
To complete the task, the system must generate a description of the
object’s location by selecting both a reference object and an
appropriate object-centered spatial term. Success in this task would
constitute a fourth qualitatively different behavior performed by
this system using precisely the same parameters.

Results and discussion. To establish the target object (green
highlighter) location, we first activate the green color term node
while simultaneously boosting the target field (see Figure 9b).

After the peak forms at the target object location, we turn off the
color term input and reduce the target field boost to an interme-
diate level. Next, we prepare the selection of a reference object by
boosting all spatial relation nodes as well as the object-centered
field (see Figure 9c). As a result, the weight patterns of the
modeled spatial relations begin to simultaneously shape the acti-
vation profile of the object-centered field. This semantically struc-
tured activation is then transmitted through the transformation
field to the reference object field. Consequently, certain regions of
the reference field become more activated, particularly those
whose spatial relation to the specified target object fits well with
one of the spatial terms.

Next, we uniformly boost the reference field to form a peak and
thereby force a selection of a reference object (see Figure 9d). This

Figure 8. Activation sequence for target object identification in Demonstration 3. Panel (a) shows objects in
the camera input. Panel (b), reference object selection by activating the blue node and boosting the reference
field. Panel (c), above node activation through task input and boost to the object-centered field, leading to
activation of the upper part of the object-centered field (lighter blue region above the reference location). Panel
(d), target field boost leading to the formation of a peak at the target object location. Panel (e), the color of the
corresponding target object is queried by boosting the color nodes, leading to the red response (box).
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selection depends both on preactivation from the transformation
field and on the properties of the visual input: A large and salient
object may be selected even if it is located in a less favorable
location simply because it produces stronger activation in the
color-space field and, as a result, stronger input to the reference
field. The target object itself cannot be selected as a referent due
to the mutual local inhibition between target and reference fields
(see Figure 9c). In the current example, the candidate reference
objects are of comparable size. Ultimately, the blue stack of blocks

that lies just to the right of the target (green highlighter) gets
selected over the red stack of blocks that is both somewhat to the
left and somewhat above the target (see Figure 9d). This selection
of the blue blocks as the reference tips the activity distribution in
the spatial relation nodes in favor of the left node—the node that
captures the spatial relation between the target and the selected
referent. Note that by this process, the selection of the reference
object and the spatial relation are mutually and dynamically de-
pendent: Reference object selection depends on the degree of

Figure 9. Activation sequence for spatial term and reference object selection in Demonstration 4. Panel (a)
shows the objects in the camera input. Panel (b), the green highlighter is defined as the target object (whose
position is to be described) by activating the green node and boosting the target field. Panel (c), both the spatial
relation nodes and the object-centered field are boosted. The semantically structured activation profiles in the
object-centered field are then transmitted through the transformation field to the reference object field. Panel (d),
reference field boost leading to the selection of a reference object location. Panel (e), boosts of both the color
and spatial term nodes. The boost of the color term nodes leads to the selection of the blue node (box) as the
reference object identifier. The boost to the spatial term nodes leads to the selection of the left node (box) as the
target object’s relation to the blue reference object.
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semantic fit and the semantic fit depends on the selected reference
object.

The system can now produce a response by boosting the color
and spatial term nodes (see Figure 9e). The boost of the color term
nodes leads to the selection of the blue node, because the location
of the blue stack is most strongly activated by the back projection
from the reference field. Among the spatial term nodes, the left
node wins the competition because the left spatial relation node is
strongly activated. These two components yield the response “to
the left of the blue item,” which describes the green highlighter’s
location.

Demonstration 5: Simulating Empirical Reference
Object and Spatial Relation Selection

Because the generation of spatial descriptions is so central to
human spatial communication, it is important to consider how well
the model’s performance in Demonstration 4 maps onto human
performance. Recent research by Carlson and Hill (2008) provides
a basis for this evaluation. In their Experiment 2, participants were
shown visual scenes containing photographs of two or three real-
world items. Participants described the location of the specified
target object (which they referred to as the located object) by
completing a phrase of the form “The target is ____.” The second
item, referred to as the reference object, was more salient (i.e.,
larger and of a different shape) than the target item. Finally, a
portion of the trials also contained a third, distractor object which
was of similar shape and size to the target.5

Results showed that while greater saliency can increase the
likelihood of selection as a referent, this selection process is also
influenced by the placement of the nonsalient item. Indeed, in
some instances the less salient distractor item was chosen as the
referent on a majority of trials. Here, we show that our model can
capture the reported reference object selection patterns in all eight
conditions tested by Carlson and Hill (2008) in Experiment 2,
including the critical six conditions containing two potential ref-
erence objects. We then explain how visual saliency and spatial
arrangement act together in the selection of the reference object in
our neural system.

Materials. To more carefully control stimulus size and,
hence, saliency, we presented colored squares of different sizes
rather than photographs of real objects as the visual input. The size
of the located and distractor objects was 10 � 10 pixels, and the
salient referent was 14 � 14 pixels. This proportion of 1:1.96
approximates the mean proportion of target-to-reference object
sizes in Carlson and Hill (1:1.74). Throughout the simulations, we
used red for the target object, green for the salient reference object,
and blue for the nonsalient distractor object.

Items were presented according to the eight arrangements in the
experimental study (see Figure 10). For these arrangements, the
input images were divided into a 5 � 3 grid of square cells. The
reference object was then placed in either the center cell of
the bottom row or in the rightmost cell of the bottom row. The
target and the distractor objects were placed in different combina-
tions in the corner cells or in the center cell of the top row (see
Figure 10). Carlson and Hill (2008) designated the different ar-
rangements by the applicability of the above relation to the located
(target) object and the distractor object relative to the referent.
They distinguished between three regions: a good region (exactly

above the reference object), an acceptable region (diagonally
above), and a bad region (to the left or right of the reference
object). Conditions were then labeled according to the placement
of the located target object (L) in the good (LG) or acceptable (LA)
above regions and the placement of the nonsalient distractor object
(D) in the good (DG), acceptable (DA), or bad (DB) above regions.

Method. The generation of a location description proceeded
exactly as described in Demonstration 4, with the red square
defined as the target object. To produce a probabilistic reference
object selection, we added noise to the activities of all fields and
nodes throughout each simulation. The strength of the noise was
treated as an additional free parameter, which was adjusted to fit
the experimental results (although this parameter value was iden-
tical for all stimulus conditions). We then ran 100 trials for each
stimulus condition and recorded how often the system selected the
green salient item and the blue distractor item as the referent.

Results and discussion. In all trials for each of the stimulus
conditions, our system produced a valid description of the target
object’s location. Note that for oblique spatial relations between
two objects, there are two possible terms (e.g., above and left) that
were considered correct. As can be seen in Figure 10, the rates of
selecting the salient object as the referent are clearly dependent on
the arrangement of the items in the visual scene for both the
empirical data (white bars) and the simulation results (dark). The
model captures the empirical results well.

How do these different reference selection rates arise in our
model? In the noiseless version of the model, reference object
selection is fully determined by the strengths of the visual inputs
and the strength of the projections from the spatial relation

5 Although these second and third items were referred to as the reference
and distractor objects, respectively, participants were never instructed or
encouraged to select the more salient as the reference object. The use of
these terms was motivated in part by the structure of the ratings task in
Experiment 1.

Figure 10. Reference object selection results for Demonstration 5. The
bars show the percentage of trials in which the more salient object (R) was
chosen over the distractor (D) as the reference object in describing the
position of the located target object (L). The arrangement of objects in
the scene for each stimulus condition is depicted on top. Object labels in
the figure were chosen to maintain consistency with the preferred termi-
nology in Experiment 2 from Carlson and Hill, 2008, Processing the
presence, placement, and properties of a distractor in spatial language
tasks. Memory & Cognition, 36, 240–255. Conditions were labeled ac-
cording to the placement of the located target object in the good (LG) or
acceptable (LA) above regions and the placement of the nonsalient dis-
tractor object in the good (DG), acceptable (DA), or bad (DB) above
regions. doi:10.3758/MC.36.2.240.
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nodes—the peak in the reference field will always form at that
location driven to a higher activity level by the combination of
these two inputs. Consequently, for a fixed visual and task input,
the same object will always be selected as the referent. With noise,
however, the field location receiving weaker inputs can reach
higher activity levels during the course of competition. In such
cases, the alternative item will be selected as the reference object.
The probability for selecting one object over the other reflects the
difference in input strength at the two locations. If one location
receives significantly more input than the other, it will be selected
in the majority of trials. If, on the other hand, the input levels are
quite similar, the selection rates for both candidates will approach
chance level. The strength of the noise determines how large the
absolute difference of activity levels has to be to reach a certain
preference for one object. This parameter therefore determines the
relative impact of the stochastic component of the model and
cannot be derived from the properties of the deterministic ele-
ments. Note that the noise level can only drive selection rates
globally either toward chance levels or toward a deterministic
response, but it does not selectively affect the outcome in any
single condition.

Comparing the simulation results with the empirical data (see
Figure 10), we find that our model effectively captures the refer-
ence object selection preferences of all eight tested conditions
(R2� .96, RMSD � 8.3). Because the selection patterns in the
two-item LG and LA conditions are straightforward (there is only
one possible referent), we concentrate on the pattern of results
from the remaining three-item conditions.

In the LA/DG condition, the located target object (L) is situated
exactly to the left of the nonsalient distractor (D), while it sits
neither perfectly above nor perfectly to the left of the salient object
(R). The more salient object is therefore selected in a minority of
the empirical (25%) and simulated trials (17%). Our model details
the neural dynamics producing this outcome. When the spatial
relation nodes are boosted (see Demonstration 4), they ultimately
project to the reference field and most strongly activate those areas
that lie on the cardinal axes extending through the target location.
In the LA/DG case, the distractor (D) location receives more input
than the salient object (R) location. This semantically based input
is sufficient to overcome the stronger visual input from the larger,
more salient object on most of the trials.

In the LG/DA condition, the distractor and the salient object
offer an equally good match to a single descriptive term: The
located target object (L) is directly right of the distractor (D), and
directly above the more salient (R) object. For this reason, both
object locations in the reference field receive comparable input
from the spatial relation nodes. Reference object selection is, thus,
based largely on visual saliency, leading to a preference for the
salient object (simulations: 96%; empirical: 85%).

In the LA/DA condition, the arrangement of items is similar to
the LA/DG condition; however, the distance between distractor
and located object is now increased. This is relevant because the
semantic weight patterns are distance sensitive, in accordance with
the boundary vector cell semantic distributions from O’Keefe
(2003). Accordingly, the location of the distractor object receives
weaker spatial semantic input than it does in the LA/DG condition.
Nonetheless, the semantic input is sufficient to balance out the
stronger visual input for the larger, more salient alternative. The

nonsalient and the salient objects are selected with approximately
equal probability (simulations: 54%; empirical: 51%).

For condition LG/DB, the visual saliency and spatial relation
both favor the selection of the salient object, consistent with the
empirical (96%) and simulated (100%) preferences. Condition
LA/DB1 is somewhat similar to LA/DG, with the located target
object (L) again in a good spatial relation (directly above) to the
nonsalient distractor (D) but in an oblique relation to the salient
object (R). As before, the better match of a spatial term leads to a
strong selection preference for nonsalient distractor over the sa-
lient object (simulations: 17%; empirical: 8%).

Finally, in the LA/DB2 condition, the located target object (L)
lies in an oblique relation to both the distractor (D) and the salient
object (R), thus providing for only “acceptable” spatial term rela-
tions. Consequently, the locations of both items in the reference
field receive the same amount of input from the spatial relation
nodes (via the object-centered and transformation fields). Visual
saliency therefore dominates and the larger, salient object (R) is
selected on the majority of trials (simulations: 74%; empirical:
58%). Interestingly, in both the empirical data and in our simula-
tions, the degree of preference for the salient object is lower here
than in the LG/DA condition. In that condition, the target object
(L) was located in a direct (i.e., “good”) spatial relation to both the
distractor (D) and the salient (R) objects. Thus, both of the item
locations received the same support from the spatial relation nodes
just as they did in the current LA/DB2 condition. Given this
equivalent spatial relation support within each of these condition,
why does visual salience dominate reference object selection more
in the LG/DA condition? Because of the reduced semantic support,
specific location input in the LA/DB2 condition is lower compared
to LG/DA. In combination with the output nonlinearity of the
dynamic fields, the lower overall activity levels in condition LA/
DB2 allow the noise to exert a greater influence on the referent
selection. This brings the selection rates closer to chance. In
contrast, the stronger inputs in the LG/DA condition reduce the
relative impact of noise and, in effect, magnify the impact of the
salience difference.

In summary, our integrated neural system captures the key
properties of the experimental results and, moreover, provides the
first formal, process-based explanation for the pattern of results.
Furthermore, when considered in the context of Demonstrations
1–4, this second fit to empirical data shows impressive generality
across different spatial language behaviors. We know of no other
theoretical framework in the spatial language domain that has
achieved this level of generality, while still retaining specification
of precise empirical detail.

General Discussion

The goal of the present work was to enhance our understanding
of the neural processes underlying flexible spatial language behav-
iors, with a focus on linking lower level visual processes with
object-centered spatial descriptions. We began by considering
Logan and Sadler’s (1996) theoretical framework outlining the
core functions required for spatial apprehension, noting that no
current theory has effectively integrated all functions within a
single system. Across five demonstrations, we showed that our
dynamic neural system using simple, real-world visual input and a
neurally grounded reference frame transformation process pro-
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vides an integrated account of these functions and their interac-
tions in the service of flexible spatial language behaviors. Our
demonstrations show how the goals of rigorous, formalized models
of empirical behavior (e.g., Regier & Carlson, 2001) and the neural
foundations of reference frame transformations (Deneve, Latham,
& Pouget, 2001; Pouget, Deneve, & Duhamel, 2002) can be
simultaneously realized within a single unified system.

The spatial term selection task in Demonstration 1 showed that
our neural dynamic system can spatially index visual input and
map spatial semantic terms to an object-centered reference frame.
To substantiate these processes as a model of human spatial
language performance, Demonstration 2 simulated empirical re-
sults from three spatial term ratings tasks from Regier and Carlson
(2001). Our simulations captured the canonical ratings profiles and
also revealed a fine-grained sensitivity to changes in both the
center-of-mass orientation and the proximal orientation. By ex-
plicitly instantiating the neural dynamic processes that underlie
ratings responses, we showed how these subtle attentional effects
first highlighted by Regier and Carlson can emerge from interac-
tive neural dynamics linked to simple visual inputs.

Demonstration 3 showed a flexible extension to a third task,
illustrating how our system can extract target object information
(color) at a linguistically cued location. Demonstrations 4 and 5
provided perhaps the strongest tests of our framework, revealing
that our system can generate a spatial description given only visual
input and the target specification. Critically, probes of this process
were consistent with empirical results testing the contribution of
salience and object location to reference object and spatial term
selection behaviors. To our knowledge, this is the first formalized
model of these effects. In sum, our neural dynamic model gener-
ated four qualitatively different behaviors and simulated empirical
results from two different experimental tasks and 11 different
experimental conditions without changes to the architecture or the
parameter settings.

We draw attention to several key aspects of the model’s perfor-
mance. First, each of these tasks demanded the satisfaction of all
four spatial apprehension functions previously detailed by Logan
and Sadler (1996). Our results show that satisfying these functions
within a single neural dynamic framework can provide for the
generation of different spatial language behaviors across varying
visual and linguistic contexts. This lends considerable support to
Logan and Sadler’s framework. Second, by simulating empirical
findings from two different tasks (spatial language ratings and
reference object selection), our model reveals how human behav-
iors in these different tasks may be rooted in the same interactive
dynamic processes. Furthermore, because we have a process-based
model, we are able to pinpoint the source of sometimes subtle
empirical effects, such as attentional weighting and changes in the
preference for visually salient reference objects.

Finally, by focusing simultaneously on reference frame trans-
formations and representational integration, we developed a flex-
ible system that brings together low-level visual representations
using real visual input with spatial semantics in an object-centered
reference frame. Neural dynamic approaches are thus capable of
instantiating behavioral flexibility across domains (Cassimatis,
Bello, & Langley, 2008) without sacrificing explicit links to em-
pirical results. By providing an explicit link between empirical
data and neural mechanisms for processing spatial information, we
highlighted how empirical research on spatial language behaviors

can contribute to our understanding of the neural basis of spatial
cognition. Future probes of the reference frame transformation
mechanism in our system may, for instance, provide novel insights
into the processing of spatial information in the brain and, more
generally, help reveal how cognitive operations emerge from, and
are coupled to, perceptual processes.

Comparisons With AVS

The goal and scope of the present model differs markedly from
that of the AVS model that was initially proposed to explain
performance in ratings tasks. Nevertheless, because of the relative
simplicity, small number of parameters, and broad applicability of
the AVS model, it is informative to examine the relationship
between its algorithmic calculation of ratings and our neural dy-
namic mechanism.

The basis for computing ratings in AVS is an attentionally
weighted sum of vectors pointing from the reference object to the
target object. The same information that this vector provides can
also be found in the activation profile of the object-centered field
that emerges after specifying the target and the reference objects.
This field can be interpreted as representing the endpoints of
vectors that connect the reference location with the target location.
The common starting point of these vectors is the center of the
object-centered field (the representation in this field is, by defini-
tion, centered on the reference object). In this view, a peak in the
left part of the object-centered field, for example, corresponds to a
vector from the reference to the target location that is pointing
leftward. This property of the object-centered field representation
is achieved through the reference frame transformation mecha-
nism. The projection from the object-centered field to the spatial
relation nodes, mediated by the semantic weight patterns, then
provides a neural dynamic instantiation of the vector-based ratings
calculation in AVS.

Because the activity peaks in the target and reference fields
extend over a small area and loosely reflect the object dimensions,
there is an averaging effect in our model similar to AVS. The peak
in the object-centered field, therefore, does not reflect a single
vector but a collection of vectors from different points in the
reference object to different points in the target object. As dis-
cussed in Demonstration 2, the precise position of the reference
peak can be influenced by the location of the target peak. This is
comparable to the attentional weighting employed by AVS.

Although in many ways we provide a dynamic instantiation of
the mechanisms outlined by AVS, AVS also explains ratings
effects that we have not yet addressed. For instance, AVS accounts
for the empirical grazing line effect in which above ratings drop
substantially when the target object falls below the highest point of
the reference object. Our model does not represent the extreme
points of the reference object in any precise way and doing so
would again require a more intricate visual system that goes
beyond the scope of our present focus. We note, however, that if
a target is below some part of the reference object (and thus below
the grazing line), this would activate the below relation node in our
model. Inhibitory interactions would then reduce the above node’s
activity. These interactions also play a significant role in shaping
the rating responses in the different conditions tested in Demon-
stration 2. These considerations notwithstanding, the empirical
grazing line effect does warrant further treatment in our model.
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Despite these differences, our model is nonetheless highly com-
patible with the AVS model, showing how the neural population
coding of location central to AVS can support behavioral flexibil-
ity when extended to the level of neural dynamic processes.

Neural Plausibility

The system we presented is implemented as a single, integrated
dynamic neural system fully specifying the processes that lead
from real visual input to the selection of spatial descriptions. We
contend that this architecture is neurally plausible on two levels.
First, the neural dynamics in our model operate according to
established principles of neural information processing. In partic-
ular, our system recognizes the continuously changing activity
profiles of neural populations as the predominant way of repre-
senting and processing perceptual information. It also employs
directed, weighted projections between these populations that are
either excitatory or inhibitory. Furthermore, it makes use of em-
pirically confirmed interaction patterns, namely local excitation
and surround inhibition (Amari, 1977; Douglas & Martin, 2004;
Erlhagen et al., 1999; Jancke et al., 1999; Pouget, Dayan, & Zemel,
2000; Wilson & Cowan, 1973). Second, the architecture that we
present preserves the functional organization of the visuospatial
processing pathway. It is composed of several elements with
specific functionality which can be flexibly combined to solve
different tasks (Damasio, 1989; Fuster, 2003; Tononi, Edelman, &
Sporns, 1998; Tononi & Sporns, 2003). We will briefly discuss
how each of those elements is related to components of the
visual-spatial pathway in the human brain.

The first step of visual processing in our model is the set of
color-space fields. This is functionally similar to early visual areas
(like V1 and V2). These areas provide a topographically organized
map of retinal space (Gardner, Merriam, Movshon, & Heeger,
2008) with intermingled representations of edge orientation, spa-
tial frequency, and color that can be functionally described as a
high-dimensional representation of visual input with two spatial
and multiple feature dimensions (Swindale, 2000). In our model,
we selected color as the sole feature dimension and discretized it
into three categories. These differences in arrangement, however,
do not influence the basic functional properties of the underlying
representations.

The activity patterns in early visual areas of the brain are not
fully determined by retinal input but can be modulated in different
ways by cognitive processes. Spatial attention can enhance neural
responses to stimuli in a specific part of a visual scene and
suppress activity for other regions (Somers, Dale, Seiffert, &
Tootell, 1999). This attentional effect corresponds directly to the
influence of the target and reference field back-projections onto
the color-space field, raising the activity level for those spatial
regions with a task-relevant object and mildly decreasing activity
elsewhere. Likewise, feature attention can increase the response to
specific features irrespective of their location in a scene. This
effect has first been described for area V4 (Chelazzi, Miller,
Duncan, & Desimone, 2001), but an effect on even earlier visual
areas has recently been described in an EEG study by Müller,
Andersen, Trujillo, Valdès-Sosa, Malinowski, & Hillyard, (2006).
They found an increase in the visual evoked potential for stimuli of
one color over another, depending on task instructions. This is very
similar to the modulation of the color-space fields by input from

the color term nodes in our system, which likewise raises the
strength of the response for visual stimuli of a certain color.

The color term nodes themselves serve as a placeholder for a
much more complex system. In effect, they replace the complete
ventral stream of visual processing, or what pathway (Goodale &
Milner, 1992; Ungerleider & Mishkin, 1982). Their purpose is to
produce a very limited form of object identification given the
visual scene. We kept object recognition as simple as possible here
to concentrate on spatial processing (see below for possible exten-
sions).

The remaining dynamic fields in our architecture—target, ref-
erence, transformation, and object-centered fields— can be
equated to different elements of the dorsal stream of visual pro-
cessing, or where pathway (Ungerleider & Mishkin, 1982). This
pathway spans the occipital and parietal lobes and is assumed to be
concerned with spatial cognition and sensory-motor coordination.
The target and reference fields in our model represent object
location in the reference frame of the visual system (i.e., image-
based), abstracted from any feature information. Corresponding
spatial representations in retinocentric coordinates can be found
throughout the dorsal stream (Colby & Goldberg, 1999; Gardner et
al., 2008; Patel, He, & Corbetta, 2009).

The transformation field that we used for the mapping be-
tween different reference frames is modeled after the properties
and conjectured function of gain-modulated neurons in the
parietal cortex (Colby & Goldberg, 1999). Our model of this
process provides the same level of detail as previous approaches
that are explicitly designed as neural models (Deneve, Latham,
& Pouget, 2001), but it achieves a higher level of neural realism
in some respects (e.g., we use lateral inhibition instead of an
algorithmic normalization of field activities). These previous
approaches predominantly dealt with the transformation from
retinocentric to head- or body-centered representations (for a
review, see Andersen, Snyder, Bradley, & Xing, 1997). How-
ever, spatial representations in multiple frames of reference
haven been found in the same area, and evidence for neural
populations coding object position in an object-centered refer-
ence frame has been described by Chafee, Averback, and Crowe
(2007; Crowe, Averback, & Chafee, 2008). It is reasonable to
assume that object-centered transformations draw on analogous
neural mechanisms.

The spatial relation and spatial term nodes, as well as the
color nodes, provide a way of representing discrete linguistic
categories in a way easily integrated into our dynamic neural
architecture. Such localist word representations have frequently
been used in linguistic modeling (e.g., Dell, Scwartz, Martin,
Saffran, & Gagon, 1997; McLeod, Plunkett, & Rolls, 1998).
These nodes, of course, are a substantial simplification of the
real neural system supporting language, but they do incorporate
some basic neural concepts including information integration
from multiple sources, restricted connectivity patterns, and the
capacity for Hebbian learning (Elman, Bates, Johnson,
Karmiloff-Smith, Parisi, & Plunkett, 1996). More importantly,
the semantic roots of these nodes in the nonlinguistic process-
ing systems of our network (e.g., color terms linked to color-
space fields) reflect an emerging view that semantic processing
is tied to neural activity in those sensory-motor brain regions
that directly represent the perception of the original stimulus
(Barsalou, 2008; Barsalou, Simmons, Barbey, & Wilson, 2003;
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Damasio, 1989; Rogers & McClelland, 2004). The linguistic
representations in our system are, therefore, analogous to cor-
tically distributed functional word webs (Pulvermuller, 2001,
2002).

Limits and Outlook

As with any theoretical model, we made several simplifications
when implementing our dynamic neural architecture (for discus-
sion of the role of simplifications in modeling, see McClelland,
2009). Perhaps the most obvious was the restricted number of
spatial terms. Our limited vocabulary was a function of the exten-
sive empirical research on projective terms, their known behav-
ioral properties, and the set of spatial terms used to probe the AVS
model. Nonetheless, the spatial term network needs to be extended
to include different classes of terms. The immense challenge of
using neural dynamics to instantiate 3–D visual perception using a
2–D visual image currently precludes some topological terms (e.g.,
in, into). The descriptor between is also challenging because two
peaks in the reference field are required (although dynamic fields
can support multiple peaks; see Johnson et al., 2009). Despite such
limits, we can still dramatically increase the size of our network
through the addition of topological terms by, far, near, “next to,”
and beside, which are sensitive to metric changes in 2–D percep-
tual space. Terms related to those tested here (e.g., over, under, “in
front,” behind) can also be easily added.

A second obvious limit is that the identification of items in the
scene is based exclusively on object color, allowing us neither to
differentiate between items of the same color nor to use colorless
objects. As noted before, we view the current mechanism as a
placeholder, and any more elaborated object recognition system
can take its place if it supports two basic operations. First, it must
be able to identify an item at a location highlighted by spatial
attention, and second, it must be able to find a specified object in
a scene and highlight its location in a spatial representation. Faubel
and Schöner (2009) have presented a DNF-based object recogni-
tion architecture that fulfills both conditions. Starting from a set of
simple feature maps over space (comparable to the color-space
fields), this system allows the identification and localization of
learned objects based on a combination of shape information and
color histograms. An extension of our mechanism which provides
a more specific object identification may also allow us to incor-
porate findings of object identity and function influencing the
outcome of spatial language tasks (Carlson-Radvansky & Radvan-
sky, 1996; Coventry & Garrod, 2004; Coventry, Prat-Sala, &
Richards, 2001).

A further limit is that we do not incorporate working memory or
longer term memory into the tasks. This is important for spatial
language because people often depend on remembered rather than
visible relations. However, dynamic neural field models have been
used to quantitatively simulate spatial working memory for both
children and adults (Schutte & Spencer, 2009; see also Simmering,
Schutte, & Spencer, 2008). Recent modeling and empirical work
(Lipinski, Spencer, & Samuelson, 2006, 2009, 2010b; Spencer,
Simmering, & Schutte, 2006) also indicates that the spatial lan-
guage dynamics are tightly coupled to these memory processes.
Moreover, recent investigations show that neural dynamic fields
can also account for novel, long-term memory effects in spatial
recall (Lipinski et al., 2010; Lipinski, Spencer, & Samuelson,

2010a). Thus, while practical constraints limited the scope of the
present article, our present framework is not theoretically restricted
in this regard.

Conclusion

The neural dynamic processes supporting reference frame trans-
formations and behavioral flexibility are central issues in spatial
cognition research. By bringing the insights of theoretical neuro-
science to bear in the domain of spatial language, we proposed a
novel system that succeeds in a range of tasks using real world
visual input. The same model also captured empirical results in
precise detail, offering the first formalized account of the complex
reference object and spatial term selection preferences established
by Carlson and Hill (2008). The success of our framework in these
rigorous natural and experimental tests corroborates the plausibil-
ity of our system as a model of human spatial language behaviors
and demonstrates how cognitive flexibility can be realized in a
system grounded in both neural dynamics and behavioral details.
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