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Abstract
To date, spatial language models have tended to overlook
process-based accounts of building scene representations and
their role in generating flexible spatial language behaviors.
To address this theore-tical gap, we implemented a model
that combines spatial and color semantic terms with neurally-
grounded scene representations. Tests of this model using real-
world camera input support its viability as a theoretical frame-
work for behaviorally flexible spatial language.
Keywords: dynamical systems; neural networks; spatial cog-
nition; spatial language.

Introduction
Spatial language is an incredibly flexible tool whose ca-
pabilities range from generating and comprehending direc-
tions (Tom & Denis, 2004) to facilitating coordinated ac-
tion (Bangerter, 2004). Yet, despite this broad behavioral
scope, implemented spatial language models which seek to
uncover processes underlying basic spatial communication
(e.g. object location description) have tended to focus on a
limited range of behaviors, namely relational judgment tasks.
These models have successfully accounted for a complex ar-
ray of empirical data including the influence of landmark
shape (Regier & Carlson, 2001) and functional object features
(Coventry et al., 2005). The neural processing aspects under-
lying these accounts, however, remain underdeveloped. Con-
sequently, a number of critical questions that bear directly on
spatial language and its linkage to supporting sensory-motor
processes have gone unaddressed. For example, how does a
neural scene representation evolve on the basis of sensory in-
formation? How might complex higher-level behaviors like
spatial language emerge from these lower-level dynamic pro-
cesses? How are the time courses of spatial language behav-
iors structured by their roots in scene representations?

Behavioral flexibility in the spatial language system be-
comes a central issue once one addresses the neural pro-
cesses that link spatial language to the sensory-motor system.
Fundamentally, we do not yet understand how the sensory-
motor foundations of scene representations and spatial lan-
guage work to support the broad array of spatial language be-
haviors. The absence of process-based accounts for the gen-
eration of spatial scene representations and the behaviors de-
rived from these representations is a significant barrier to de-
veloping a more comprehensive, integrative spatial language
model.

As a step to overcoming this barrier, we were led to con-
sider three elements underlying behavioral flexibility in nat-

ural spatial language. First, the spatial language system uses
both spatial and non-spatial characteristics. Second, it inte-
grates the graded sensory-motor representations with sym-
bolic, linguistic terms. Finally, the spatial language system
combines these numerous elements continuously in time ac-
cording to the specific behavioral context.

As a step towards developing a behaviorally flexible theo-
retical framework for spatial language that satifies these con-
straints, one needs a representational language that links to
both the sensory-motor and linguistic worlds. The Dynamic
Field Theory (Erlhagen & Schöner, 2002), a neuronally based
theoretical language emphasizing attractor states and their in-
stabilities, is one viable approach to this problem. Recent
applications of the DFT have extended beyond spatial work-
ing memory development (Spencer, Simmering, Schutte, &
Schöner, 2007) to include a theoretically generative account
of signature landmark effects in spatial language (Lipinski,
Spencer, & Samuelson, in press). Critically, this latter work
integrated a connectionist-style localist spatial term network
into the model. This suggests that the DFT can provide the
requisite, integrative representational language.

The present work incorporates this hybrid approach to im-
plement a new model integrating spatial language semantics
with real-world visual input. Our goal is to qualitatively test
the model’s core functionality and, thus, its viability as an
initial theoretical framework for flexible spatial language be-
haviors. To rigorously test our model, we implement it on a
robotic platform continously linked to real-world visual im-
ages of everyday items on a tabletop workspace. Our model
extracts the categorical, cognitive information from the low-
level sensory input through the system dynamics, not through
neurally ungrounded preprocessing of the visual input. Mod-
els which do not directly link cognitive behavior to lower-
level perceptual dynamics risk side-stepping this difficult is-
sue. Our demonstrations specifically combine visual space, a
selected subset of basic English spatial semantic terms, and
color. These demonstrations serve as an initial proof of con-
cept that takes an early step towards modeling more complex,
natural spatial language behaviors.

Modeling neurons and dynamical neural fields

This section briefly reviews the mathematics of our model
(see also (Erlhagen & Schöner, 2002)).



Dynamical fields
The dynamical neural fields are mathematical models first
used to describe cortical and subcortical neural activation dy-
namics (Amari, 1977). The dynamic field equation Eq. (1)
is a differential equation describing the evolution of activa-
tion u defined over a neural variable(s) x. These neural vari-
ables represent continuous perceptual (e.g. color) or behav-
ioral (e.g. reaching amplitude) dimensions of interest that can
be naturally defined along a continuous metric.

τu̇(x, t) =−u(x, t)+h+
Z

f (u(x′, t))ω(∆x)dx′+

+ I(x, t)
(1)

Here, h < 0 is the resting level of the field; the sigmoid
non-linearity f (u) = 1/(1+ e−βu) determines the field’s out-
put at suprathreshold sites with f (u) > 0. The field is quies-
cent at subthreshold sites with f (u) < 0. The homogeneous

interaction kernel ω(∆x) = cexce
−(∆x)2

2σ2 − cinh depends only on
the distance between the interacting sites ∆x = x− x′. This
interaction kernel is a Bell-shaped, local excitation/lateral in-
hibition function. The short-range excitation is of amplitude
cexc and spread σ. The long-range inhibition is of amplitude
cinh. I(x, t) is the summed external input to the field; τ is the
time constant.

If a localized input activates the neural field at a certain lo-
cation, the interaction pattern ω stabilizes a localized ”peak”,
or ”bump” solution of the field’s dynamics. These activa-
tion peaks represent the particular value of the neural variable
coded by the field and thus provide the representational units
in the DFT (Spencer & Schöner, 2003).

In our model, all entities having ”field” in their name
evolve according to Eq. (1), where x is a vector representing
the two-dimensional visual space in Cartesian coordinates.
The links between the fields are realized via the input term
I(x, t), where only sites with f (u) > 0 propagate activation to
other fields or neurons.

Discrete neurons
The discrete (localist) neurons in the model representing lin-
guistic terms can be flexibly used for either user input or re-
sponse output and evolve according to the dynamic equation
(2).

τd ḋ(t) =−d(t)+hd + f (d(t))+ I(t). (2)

Here, d is the activity level of a neuron; the sigmoidal non-
linearity term f (d) shapes the self-excitatory connection for
each discrete neuron and provides for self-stabilizing activa-
tion. The resting level is defined by hd . The I(t) term rep-
resents the sum of all external inputs into the given neuron.
This summed input is determined by the input coming from
the connected neural field, the user interface specifying the
language input, and the competitive, inhibitory inputs from

the other discrete neurons defined for that same feature group
(color or space); τ is the time constant of the dynamics.

The spatial language framework

Spatial semantic
�elds

“to red”

“to green”

“to
 blue”

Spatial
templates

 B 
Color-space

�elds A 

E

 C
D

Reference
�eld

Figure 1: Overview of the architecture

This section outlines the overall structure (see Fig. 1) of
our integrative model and explains how it operates in two sce-
narios fundamental to spatial language: describing where an
object is (Demonstration 1) and describing which object is in
a specified spatial relation (Demonstration 2).

Color-space fields
The color-space fields (Fig. 1A) are an array of several dy-
namical fields representing the visual scene. Each of the fields
is sensitive to a hue range which corresponds to a basic color.
The resolution of color was low in the presented examples be-
cause only a few colors were needed to represent the used ob-
jects. In principle, the color (hue) is a continuous variable and
can be resolved more finely. The stack of color-space fields
is therefore a three-dimensional dynamic field that represents
colors and locations on the sensor surface. The camera pro-
vides visual input to the color-space field, which is below the
activation threshold before the task is defined. The field is
thus quiescent to this point.

Once the language input specifies the color of the object,
however, the resting levels of all sites of the correspond-
ing color-space field are raised homogeneously. Because the
color-space fields receive localized camera input, this uni-
form activation increase is summed with that input to enable
the development of an instability and, ultimately, the forma-



tion of a single-peak solution. This peak is centered over the
position of the object with that specified color.

The spatial language input also influences the color-space
field’s dynamics through the aligned spatial semantic fields
(see below).

Reference field
The reference field (Fig. 1B) is a spatially-tuned dynamic
field which also receives visual input (Fig 1B). When the
user specifies the reference object color, the corresponding
”reference-color” neuron becomes active and specifies the
color in the camera image that provides input into the refer-
ence field. A peak of activation in the reference field evolves
at the location of the reference object. The reference field
continuously tracks the position of the reference object. Its
dynamics also filters out irrelevant inputs and camera noise
and thus stabilizes the reference object representation. Hav-
ing a stable, but updatable reference object representation al-
lows the spatial semantics to be continuously aligned with the
visual scene.

Spatial semantic templates
The spatial semantic templates (Fig. 1C) are represented as a
set of synaptic weights that connect spatial terms to an ab-
stract, ”retinotopic” space. The particular functions defin-
ing ”left”, ”right”, ”below”, and ”above” here were two-
dimensional Gaussians in polar coordinates and are based on
a neurally-inspired approach to English spatial semantic rep-
resentation (O’Keefe, 2003). When viewed in Cartesian co-
ordinates, they take on a tear-drop shape.

Shift
The shift mechanism (Fig. 1D) aligns these retinotopically
defined spatial semantics with the current task space. The
shift is done by convolving the ”egocentric” weight matrices
with the outcome of the reference field. Because the single
reference object is represented as a localized activation peak
in the reference field, the convolution simply centers the se-
mantics over the reference object. The spatial terms thus be-
come defined relative to the specified reference object loca-
tion (for related method see (Pouget & Sejnowski, 1995)).

Aligned spatial semantic fields
The aligned spatial semantic fields (Fig. 1E) are arrays of
dynamical neurons with weak lateral interaction. They re-
ceive input from the spatial alignment or ”shift” mechanism
which maps the spatial semantics onto the current scene by
”shifting” the semantic representation of the spatial terms to
the reference object position. The aligned spatial semantic
fields integrate the spatial semantic input with the summed
outcome of the color-space fields and interact reciprocally
with the spatial-term nodes. Thus, a positive activation in an
aligned spatial semantic field increases the activation of the
associated spatial-term node and vice versa.

Demonstrations
We here detail two exemplar demonstrations (from a set of
thirty conducted) which address two behaviors fundamental
to spatial language. In the presented scenarios, three objects
were placed in front of the robot: a green stack of blocks, a
yellow plastic apple, and a blue tube of sunscreen. The visual
input was formed from the camera image and sent to the ref-
erence and color-space fields. The color-space field input was
formed by extracting hue value (”color”) for each pixel in the
image and assigning that pixel’s intensity value to the corre-
sponding location in the matching color-space field. The in-
put for the reference field was formed in an analogous fashion
according to the user-specified reference object color. When
the objects are present in the camera image, the reference and
color-space fields receive localized inputs, corresponding to
the three objects in view (marked with arrows, see Fig. 2 and
Fig. 3). This was the state of the system before the particular
task was set.

In Demonstration 1 we ask ”Where is the yellow object rel-
ative to the green one?” and the robot must select the correct
descriptive spatial term. In Demonstration 2 we ask ”Which
object is to the right of the yellow one?” and the robot must
select the color term that describes the target object. Both ex-
amples were performed with exactly the same visual scene
and parameter set. Thus, the only difference for the sys-
tem was the user-specified task input. If our model functions
properly, the interactive dynamics should select the correct
spatial or color term according to the task details.

Due to the graded representation of space and color in the
neural fields, being able to solve these two tasks means ac-
cessing hundreds of scenarios with multiple objects and ob-
ject positions in the image. More fundamentally, these differ-
ent tasks both require the integration of visual and symbolic
input as well as the autonomous selection of a descriptive spa-
tial term. Such integration and decision processes are a core
capacity of the human spatial language system and underlie
the full range of real-world spatial language behaviors. Ac-
counting for these core processes in different tasks in a sin-
gle, neurally-grounded model provides a strong foundation
for scaling up to more complex spatial language scenarios.

Demonstration 1: Describing ”Where”
Demonstration 1 asks ”Where is the yellow object relative to
the green one?” To respond correctly, the robot must select
”Right”. Fig. 2 shows the neural fields’ activation just before
the answer is given. The task input first activates two dis-
crete neurons, one representing ”green” for the user-specified
reference object color and the other ”yellow” for the user-
specified object color (see user inputs, top Fig. 2). The ref-
erence object specification ”green” leads to the propagation
of the green camera input into the reference field, creating an
activation bump in the reference field at the location of the
green item (see Reference field, Fig. 2). The specification
of the target color ”yellow” increases the activation for the
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Figure 2: Demonstration 1 activations just before answering ”Where”.

”yellow” node linked to the ”yellow” color-space field (see
yellow activation time course line, top Fig. 4a), which raises
the resting level of the associated ”yellow” color-space field.
This uniform activation boost coupled with the camera input
from the yellow object induces an activation peak in the field
(see ”yellow” Color-space field, Fig. 2).

This localized target object activation is then transfered
to the aligned semantic fields. In addition to receiving this
target-specific input, the aligned semantic fields also receive
input from spatial term semantic units. Critically, these se-
mantic profiles are shifted to align with the reference object
position. In the current case, the yellow target object activa-
tion therefore overlaps with the aligned ”right” semantic field
(see red arrow in the ”right” Aligned spatial semantic field,
Fig. 2). This overlap ultimately drives the activation and se-
lection of the ”right” node (see spatial-term neuron activation
time course, bottom Fig. 4a).

Demonstration 2: Describing ”Which”
Demonstration 2 asks ”Which object is to the right of the
yellow one?”. To respond correctly, the robot must select
”Blue”. As indicated in Fig. 3, the task input first activates
two discrete neurons, one representing the reference object
color ”yellow” and the other representing ”right”.

The reference object specification ”yellow” creates an ac-

tivation bump in the reference field location matching that
of the yellow item (see Reference field, Fig. 3). The spec-
ification of ”right”, in its turn, increases the activation for
that spatial-term node (see activation time course, bottom
Fig. 4b), creating a homogeneous activation boost to the
”right” semantic field. This activation boost creates a positive
activation in the field to the right of the yellow reference ob-
ject (see ”right” Aligned spatial semantic field, Fig. 3). This
spatially-specific activation is then input into the color-space
fields and subsequently raises activation at all those color-
space field locations to the right of the reference object (see
lighter blue Color-space fields’ regions, Fig. 3). This re-
gion overlaps with the localized input of the blue object in
the ”blue” color-space field and an activation peak develops
in that field (see red arrow in the ”blue” Color-space field,
Fig. 3). This increases the activation of the associated ”blue”
color-term node, triggering selection of the correct answer,
”blue” (see color-term node’s activation profile, top Fig. 4b).

Discussion
Together, these demonstrations reveal the model’s ability to
localize the specified target object in the visual scene and to
extract the required spatial or non-spatial target information.
These different behaviors emerged from the autonomous dy-
namics integrating the low-level camera input and the user
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Figure 3: Demonstration 2 activations just before answering ”Which”.

input and are thus truly context-dependent. In assessing this
framework it is also important to note that precisely the same
parameter setting was used in all tasks; only the context input
changed. Thus, the behaviors are autonomously structured
simply by the symbolic and visual input. Even with our ini-
tially limited range of spatial and color terms, the framework
can be immediately applied to a broad range of real-world ob-
jects and locations without modification. This novel system
therefore provides a contextually adaptive framework for the
flexible application of spatial language. More fundamentally,
because of its focus on integrative dynamic processes mod-
elled in accordance with neural principles, it also provides
a foundation for modeling more complex human spatial lan-
guage behaviors.

References
Amari, S. (1977). Dynamics of pattern formation in lateral-

inhibition type neural fields. Biological Cybernetics,
27, 77-87.

Bangerter, A. (2004). Using pointing and describing to
achieve joint focus of attention. Psychological Science,
15, 415-419.

Coventry, K., Cangelosi, A., Rajapakse, R., Bacon, A., New-
stead, S., Joyce, D., et al. (2005). Spatial prepositions
and vague quantifiers: Implementing the functional ge-

ometric framework. In C. Freksa (Ed.), Spatial cog-
nition iv (Vol. LNAI 3343, p. 98-110). Heidelberg:
Springer-Verlag.
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