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Sweden

Email: robert.lowe@his.se

Yulia Sandamirskaya
Theory of Cognitive Systems
Institut für Neuroinformatik

Ruhr-Universität Bochum
Germany

Email: sandayci@rub.de

Erik Billing
School of Informatics

Interaction Lab
University of Skövde
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Abstract—In animal and human learning, outcome expectancy
is understood to control action under a number of learning
paradigms. One such paradigm, the differential outcomes effect
(DOE), entails faster learning when responses have differential,
rather than non-differential, outcomes. The associative two-
process theory has provided an increasingly accepted explanation
as to how outcome expectancies influence action selection, though
it is computationally not well understood. In this paper, we
describe a neural-dynamic model of this theory implemented as
an Actor-Critic like architecture. The model utilizes expectation-
based, or prospective, action control that following differential
outcomes training suppresses stimulus-based, or retrospective, ac-
tion control (known as overshadowing in the learning literature).
It thereby facilitates learning. The neural-dynamics of the model
are evaluated in a simulation of experiments with young children
(aged 4-8.6 years) that uses a differential outcomes procedure.
We assess development parametrically in neural-dynamic terms.

I. INTRODUCTION

The parallel between animal/human-learning and machine
learning based reinforcement learning (RL) has, historically,
been strong [1]. However, a phenomenon increasingly rec-
ognized in the animal learning literature – the differential
outcomes effect (DOE) – has been ignored in machine learning
applications of RL. The DOE manifests when training ani-
mals on stimulus-response options that have differential out-
comes (rewards). It comprises faster learning (than with non-
differential outcomes) consequent to using learned outcome
expectancies (prospection) to cue correct responses (following
presentation of the external stimulus) [2], [3]. Traditional in-
strumental learning, instead, concerns maintaining the external
stimulus in memory (retrospection) for cueing responding.
The DOE implies that prospective and retrospective forms
of response control can interface through overshadowing.
Prospection suppresses (‘overshadows’) the effects of learned
retrospection during differential outcomes (DO) training.

Associative two-process theory [2], [3] offers a strong
candidate for explaining the DOE. Its focus is on how response
(or ‘action’) control is mediated by both a retrospective
route, learned via stimulus-response (S-R) associations, and
a prospective route, learned via stimulus-outcome expectancy

(S-E) and outcome expectancy-response (E-R) associations.
The computational mechanisms for implementing such dual-
routes and their mediation, however, have not been identified.

Dynamical systems, and in particular Dynamic Field Theory
(DFT) [4], [5] thinking, in the study of infant cognitive
capacities and their development have been manifold since the
seminal work of Esther Thelen [6]. This paradigm has utilized
DFT as a means of modelling the cognitive processes behind
infant performance. Thelen et al. produced a mathematical
formalism of a motor planning field accounting for the inte-
gration of visual stimuli (including location and cue salience),
delay time (i.e. memory), and age parameters in a study of
motor memory and decision making. In their model, Thelen
et al. demonstrated how and why cognitive development
may depend intimately on the interrelation among multiple
parameters. DFT since then has been successfully applied to
modelling development of spatial and visual working memory
in infants [7]. This paradigm has as well been used to develop
cognitive architectures, which may be linked to physical
sensors and motors of embodied agents [8].

In this paper, we present a neural-dynamic-connectionist
implementation of associative two-process theory which: a)
helps to clarify the computational nature of DO learning using
a neural-dynamic perspective, b) can be understood in terms of
developmental psychology. The performance of the model is
evaluated with respect to a simulations-based replication study
of two experiments [9],[10] of infant-learning performance
using a DO procedure. The resulting Actor-DoCritic (Actor-
Differential outcomes Critic) architecture applies to decision
making RL (selecting among actions with differential reinforc-
ing outcomes) and faster learning, with potential applications
to pedagogics and robotics.

The paper breaks down as follows: In section 2, we present
the DOE, associative two-process theory, and a procedure
used to investigate both DO and non-DO infant learning
performance. In section 3 we present the Actor-DoCritic.
Section 4 presents results of our simulated replication study
of [9],[10]. Section 5 offers concluding comments.
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II. REINFORCEMENT LEARNING BY DIFFERENTIAL
OUTCOMES

A. The differential outcomes effect and instrumental learning

In Instrumental learning theory, contention has historically
existed concerning the routes by which animals associate
stimuli (S) with responses (R) (cf. [11]). Much debate concerns
the nature of S-R versus R-O (outcome) associations. Pertinent
to this debate is the Differential Outcomes Effect (DOE).

The DOE concerns improved learning of correct (i.e. re-
warded) S-R pairs when different rewards are presented for dif-
ferent (correct) S-R pairs. The associative two-process theory
of Trapold and Overmier [2], perhaps the leading hypothesis
to account for the DOE today [12], [3], builds on classic
two-process learning theory [13]. This theory entails separate
routes for learning S-R and S-O associations where the latter
route has no direct control over responding providing instead
a measure of value. Associative two-process theory, to the
contrary, proposes that outcome expectancies, during a DO
procedure, can cue responses in place of, or in combination
with, the external stimuli. The outcome expectancy for a
particular reinforcer becomes a stimulus: “the reinforcer itself
is part of what is learned” ([12], p.1). In this sense, the classical
conception of the stimulus-response-outcome, or (S-R)-O,
sequential relation (with S-R in brackets denoting that the
stimulus-response association is learned), is more accurately
portrayed as (S-E-R)-O where E is the learned expectation tied
to a particular outcome. This relationship is captured in Fig. 1.

Fig. 1. The differential outcomes effect, adapted from [14]. A. S-R associ-
ations are simply reinforced. B. Outcome expectation (E) can cue responding
following S-E, E-R learning. C. Non-differential outcomes expectations do
not provide extra information in response selection. D. Differential outcomes
expectations provide additional information to stimuli for cueing responses.

As exemplified in Fig. 1D, under DO training, specific
(differential) outcomes expectations (E1, E2) associated with
different stimuli are associated with specific responses. This
S-E + E-R route under DO training thereby provides more
information to such associations than when formed under non-
DO training (Fig. 1C). It has been experimentally derived that
activity via this S-E + E-R route entails a suppressive effect
on conventional S-R output, cf. [14]. It is thereby suggested

that internal expectancy cues come to ‘overshadow’ stimulus
cues when concerning response (action) control.

Among others, Pearce [11] suggests that it may not be
an easy task to develop a computational model of such
an instrumental conditioning approach: “We would need to
take account of three different associations that have been
shown to be involved in instrumental behavior, S-R, R-US
[reinforcement], S-(R-US)” (p.111). From the perspective of
(neural) computational modelling the associative two-process
theory lends itself to a connectionist approach. However, while
S-E, S-R and E-R associations may be developed according
to hebbian based learning, two questions are not clearly
addressed by the theory (or in the DOE literature):

1) how should E (expectation) be modelled such that it can
differentially cue responses?

2) how and when should E-R connections overshadow S-R
connections in control of responses?

From a neurobiological perspective, where do the expectan-
cies come from? [15] has suggested that different structures
within the prefrontal cortex capture different dimensions of
value used in decision making. [16] has put forward the
amygdala as a candidate for learning reward expectancies. [17]
suggest that prefrontal cortex (particularly orbitofrontal cortex)
may encode reward omission expectation and contributes
thereby to the computation of affective working memory
(AWM). The activity of the AWM is suggested to suppress that
of the more conventional working memory (WM). WM has
been linked to the notion of ‘retrospection’ (keeping in mind
a behaviour-eliciting stimulus prior to reward acquisition).
AWM, on the other hand, has been linked to the notion of
‘prospection’ (having in mind the particular reward or goal
that can then cue one of a repertoire of behaviours) – see
Peterson and Trapold [14]. The suppression of WM by AWM
hints as to how, neurobiologically, overshadowing is achieved.

Our modelling approach can be likened to a theoretical
behaviourism stance [18] whereby we adopt, where possi-
ble, a parsimonious connectionist/neural-dynamic modelling
approach. We further frame the model in Actor-Critic terms
which helps us address the two above-mentioned questions.
The Critic is fundamentally responsible for addressing ques-
tion (1) while the Actor is responsible for (2). These questions
will be further addressed in Section III.

B. Differential outcomes: learning and development

Whereas most studies on the DOE have concerned learning
and decision making in animals, Maki et al. [9], and later
Estevez et al. [10], demonstrated the potential for the DOE
to facilitate learning in human infants. Following pre-test and
pre-training phases, the experimenters evaluated a further two
phases consisting of i) behavioural, and ii) verbal feedback,
assessments of the influence of the differential outcomes
effect. The latter phase helped to assess the extent prospective
control dominated behaviour as infants were asked “What
reward am I thinking of?” when presented with the initial
stimulus cues. The infants were aged from 4-5.6 years and
compared performance on DO and non-DO procedures.
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Fig. 2. Per-trial experimental set-up of Maki et al. (1995) and Estevez
et al. (2001). The infant must i) observe the sample stimulus, ii) wait during
a 2 second delay, iii) point to the correct comparison stimulus – that yields
reinforcement. Thus, in this example, S-R1 → reward, S-R2 → no reward.

Fig. 3. Maki et al. (1995). Infants are presented one of two stimuli cues
per trial associated with comparison stimuli that yield rewarding outcomes.
Differential and non-differential outcomes conditions exist. Different symbols
are used in Estevez et al. (2001) but the same procedure was applied.

Using the same experimental procedure, Estevez et al. [10]
followed up on the work of Maki et al. by evaluating the
performance of older infants (4.6 to 8.6 years) to assess
whether the DOE would persist developmentally. Figs. 2 and
3 illustrate the experimental procedure followed by Maki et
al. and Estevez et al. In Fig. 2 the per-trial presentation is
depicted. Firstly, a sample stimulus (image) on the top half of a
piece of paper is presented to the infant (and then withdrawn);
secondly, a blank piece of paper is presented over a 2 second
period (and then withdrawn); thirdly, the comparison stimuli
are presented. In the third phase, the infant is required to point
(response) to the stimulus that yields the reward. In the DO
condition the reward is either food or verbal praise depending
on the particular S-R pairing (S1-R1, S2-R2) – see Fig. 3.
In the non-DO condition reward – food or verbal praise –
is randomly presented. The precise details of the pre-training
procedure (not relevant to a computational study) can be found
in experiment 1 of Maki et al. [9], and Estevez et al. [10].

III. THE NEURAL DYNAMIC ACTOR-DOCRITIC MODEL

We now present a continuous time neural-dynamic instan-
tiation of the associative two-process theory (see Fig. 1).
Fundamentally, the model is a connectionist implementation
of a TD learning architecture. However, the neural dynamic
approach to modelling allows for investigating the following:

1) overshadowing: how retrospective (WM) and prospec-
tive (AWM) memory interact over the intervals between
stimulus (S) and outcome (O),

2) development: neural field models have been used to
develop hypotheses concerning infant development –

particularly of WM [19]; here, we are concerned with
how retrospective (WM) and prospective (AWM) mem-
ory interact over developmental time,

3) embodiment: attractor dynamics allow for (noise) ro-
bustness and coupling to the sensory and motor systems
of real world (e.g. robotics) applications – this element
concerns projected future work.

The remainder of this section will describe the rationale
and implementation of the neural-dynamic model (Actor-
DoCritic), which consists of two parts: 1) Differential out-
comes Critic (DoCritic), 2) Differential outcomes Actor.

A. Differential outcomes Critic

In the DOE, outcome expectations provide internal stim-
uli that can come to control behavioural responding [12].
The ubiquity of the DOE is testified to by the number of
reinforcement dimensions over which its influence has been
observed: 1) type (e.g. food versus water), 2) magnitude, 3)
probability of presentation, 4) delay of reinforcement following
the stimulus. This list (cf. [20]) compares to that identified by
[21]: “the value of a reward given by an action at a state is
a function of reward amount, delay and probability.” (p.410).

Fig. 4. A computational model of emotional conditioning, adapted from
[22]. The division into acquisition (magnitude) and omission dimensions
allows the model to replicate data from a number of key learning paradigms.

Fig. 5. The differential outcomes Critic. TD value expectations for
Magnitude and Omission Critics output to relay nodes (expectancy dimensions
E1 and E2). The relayed activation of E1 and E2 are used as Actor inputs.

Value functions provide expectations of reinforcing outcomes
– providing the ‘E’ in Fig. 1. The standard bearers of RL in
both animal learning and machine learning modelling, i.e. tem-
poral difference (TD) learning [1] and the Rescorla-Wagner
model [23], respectively, conflate reinforcement information
into a single dimension of value. Therefore, a reinforcer of
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magnitude 1.0 and presentation probability 0.5 is valued equiv-
alently to one of magnitude 0.5 and presentation probability
1.0. Agents may benefit from multi-dimensional reinforcer
information. For example, high magnitude, low probability
reinforcers might motivate learning the causal antecedents of
the low presentation probability so as to increase future reward
yield. In animal learning, the scalar value function has been
noted as a key limitation of the Rescorla-Wagner model [24].

Balkenius and Moren [22] present a model of learning
(Fig. 4) that addresses the above-mentioned limitation of the
Rescorla-Wagner model by deriving a representation of rein-
forcement omission from a reinforcement acquisition value.
Although not explictly noted by the authors, this effectively
provides an omission probability as a function of reinforce-
ment magnitude. Fig. 5 depicts our model, referred to as
Differential Outcomes Critic (DoCritic). This is an adaptation
of the Balkenius model that addresses a further limitation of
the Rescorla-Wagner model – delayed discounting of reward
[25]. The DoCritic comprises two TD networks for learn-
ing magnitude and omission values where omission value is
learned as a function of reward (magnitude) value.

The DoCritic calculates value functions that associate pre-
sented stimuli with Magnitude and Omission expectation. We
refer to these associations as Si–E1 and Si–E2, respectively,
where i is the index of the presented stimulus. The learned
value functions produce the standard exponential growth pro-
file of TD discounted delay over the stimulus-outcome interval,
where maximum values indicate the expected magnitude and
omission probability at reward onset time, in [0,1]. The
Magnitude Critic implements standard TD learning though
now Si-E1 can be learned but not unlearned. This is consistent
with the non-TD implementation of [22].

The Omission Critic’s computation is as follows:
• Precondition for learning: i) the Omission Critic error

node (Fig. 5) updates when reinforcement via the Mag-
nitude Critic ‘Target’ node is absent at the learned time.
Thus, Magnitude Expectation input is no longer ‘neutral-
ized’. ii) the omission error is inhibited by ‘Target’ when
reinforcement does arrive at the anticipated time.

• Asymptotic learning: i) Omission Expectation inhibits the
omission error as a function of Si-E2 weights develop-
ment. ii) Expectation is learned via the Omission Critic
‘Target’ in relation to the TD learning discount term γ.

• Unlearning: Si–E2 associations decrease as a result of
the now unexpected reinforcement input.

Omission Expectation provides output to E2 which inhibits
(subtracts from) E1 (Magnitude Expectation output). Equa-
tions (1-5) describe the Critic mathematically:

Ve(t) = Σs∈S

(
θes(t)φs(t)

)
, (1)

θe(t) = θe(t−∆t) + βeσeφs(t−∆t), (2)

where Ve(t) is the learned value function (expectation);
θe(t) is the value function (S-E) update rule; e in {m, o} is an
index denoting Magnitude or Omission Critic value functions,

respectively; t is time in [1, T ] where T = 100; s is the
number of different stimuli in [1, S] where S = 2; βe is a
learning rate in [0,1); ∆t is the time window set here to 1;
σe is the prediction error term; φs is the ‘backward view’
(see [1]) eligibility trace of the input stimulus (set to 1 at
stimulus onset) calculated as φs(t) = φs(t−∆t)γλTD, where
γ = 1− ∆t

τm
(see below) and λTD = 1, implementing TD(1).

Vmrel(t) = Vm(t)− Vo(t), (3)

where Vmrel(t) is the magnitude relay output of the Critic.
The omission relay Vorel(t) = Vo(t) (see Fig. 5).

σm(t) = λ(t−∆t) +
1

∆t
[(1− ∆t

τm
)Vm(t)−Vm(t−∆t)] (4)

σo(t) = −σm(t) +
1

∆t
[(1− ∆t

τm
)Vo(t)− Vo(t−∆t)] (5)

where σm and σo represent prediction errors used to update
the Magnitude and Omission Critics, respectively, and to
approximate them better as Bellman optimality functions; λ(t)
is the reward signal in [0,1]; τm is a time constant.

B. Differential outcomes Actor

Fig. 6. The differential outcomes Actor. The Action field (green) is a one-
dimensional (1D) dynamic field over the continuous dimension of ‘action
orientation’. The Prospective Actor contains 1D fields for each of the ER1
and ER2 nodes and the Pre-Action field over the same dimension. The
Prospective Actor receives expectation/value inputs from the Critic’s E1 and
E2 nodes. The Retrospective Actor receives stimuli inputs to a 2D Pre-Action
field for the continuous stimulus-response dimensions of hue and orientation.

The DoActor, depicted in Fig. 6, interfaces with the
DoCritic (Fig. 5) via inputs from the two Critic networks.
These relayed inputs provide calculations of outcome
expectation (E) that can be associated through learning
with different reinforced responses. The Actor has two
networks: Retrospective Actor and a Prospective Actor. The
Actor networks compete for response control. We suggest
that this competition should be understood in terms of i)
neural-dynamics, and ii) associative learning.

1) The neural-dynamics of overshadowing: Both Actor
networks compute activations across a one-dimensional con-
tinuous action space. The Retrospective Actor Pre-Action
field is a dynamic field, defined over a 2D space that maps
a continuous stimulus (hue) dimension to the action space
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consistent with the spatial nature of the Maki et al./Estevez
et al. experimental set-up (see Fig. 2), with hue used as a
simplifying visual dimension. The Prospective Actor relays
activation from the Ei fields to its Pre-Action field and onto
its ERi fields. The two networks use two types of neural-
dynamics: 1) Attractor dynamics - in the Retrospective Actor,
2) Exponentially growing activation dynamics - in the Prospec-
tive Actor (linearly relayed from the Critic). Prospective Actor
output can overshadow Retrospective Actor as a function of
i) strength of output, and ii) the comparative strengths of the
amplification constants of the Actor networks – see below. Eq.
6 describes the activation function of the Retrospective Actor.

τSR ˙SR(x, y, t) = −SR(x, y, t) + hg

+

∫
cKωc(x

′ − x, y′ − y, σgE )Λ(sr(x′, y′, t), βsr)dx
′dy′

−
∫
cKωc(x

′ − x, y′ − y, σgI )Λ(sr(x′, y′, t), βsr)dx
′dy′

−pdev · cI + S + srltm + cR (6)

where ˙SR(x, y, t) represents the rate of change of the
activation level for each node of the two-dimensional (x, y)
stimulus(x)-response(y) field as a function of time t. The
standard Amari [4] field terms are as follows: τSR is
the time scale of the dynamics; hg = field resting level;
activation in this field is shaped by the local excitation/lateral
inhibition interaction profile defined by self-excitatory
projections (with amplitude cK and width σgE) and inhibitory
projections (with strength cK and width σgI ). The interaction
projections are defined by the convolution of a Gaussian
kernel with a sigmoidal threshold function. This field also
has a number of external inputs: cI , an inhibition input from
the ERi fields; S, stimuli inputs; srltm, a preshape field
input updated by reinforcement; cR, a ridge input for the
stimuli. Implementation details of the above can be found
at: http://www.cognitionreversed.com/appendices/. cK and
pdev are the amplification constants (independent variables)
that determine the balance of the action selection influence
of Retrospective and Prospective Actors. The Prospective
Actor’s fields do not use interaction kernels but instead relay
non-transformed activation from the Critic to the Action field.

2) The associative learning of overshadowing: The logic
of learning, in this network, is as follows:
• scaffolding of E-R learning: i) supra-threshold SR1/SR2

activity inputs to Action layer, ii) reinforcement occurs
if a) activation endures (over stimulus-outcome interval),
and b) the correct response (R1/R2) is produced, which
simultaneously boosts S-R (Si–SRi) and S-E associa-
tions (E-R associations require S-E associations).

• E-R learning and overshadowing: i) E-R associations
grow with correct responses; ii) overshadowing occurs as
a function of S-E + E-R associative growth and the values
of the developmental parameters (see next subsection).

Prospective control, however, is not guaranteed following
learning of S-R associations and outcomes. It has been found

that following a non-DO procedure, outcome expectancies
have no (or minimal) control over responding [3]. We
compared these results with those where the DOE is present
[12],[3] and noticed that overshadowing requires an XOR
mechanism. If an expectation builds up for neither, or both,
response options, the retrospective actor (S-R) remains in
control. However, where E-R associations uniquely identify
only one action, E-R overshadowing of S-R relations results.

3) The developmental parameters of overshadowing:
1) cK (retrospective actor) – this determines the strength

of the interaction kernel in the stimulus-response field.
It can be tuned to provide one of two types of attractor
dynamics on sites of the field: i) self-stable attractors
– input-dependent supra-threshold activation, ii) self-
sustained attractors – supra-threshold activation that
persists after the stimulus input has been withdrawn.

2) pdev (prospective actor) – this determines the strength
of a) exponentially growing prospective activation in
the Pre-Action field, b) suppression of retrospective
control, and c) excitation of the Action field, potentially
overriding an existing action/response preference.

Maki et al. [9] found improved learning performance in the
DO, compared to the non-DO, condition (see Fig.8(b)) but not
for the youngest (4 to 4 years 6 months) of the three age groups
studied. Estevez et al. [10], found enhanced performance over
age groups with infants in the DO condition outperforming
those in the non-DO condition up until the oldest age. The
task was considered too simple for the oldest children for a
DO effect to be relevant. In our experiment, we have two
independent variables (IVs): cK and pdev the values of which
we propose constitute a developmental trajectory.

IV. RESULTS

As a necessary first test of the model we assessed the
DoCritic on learning acquisition, extinction and reacquisition
profiles. Realistic animal/human learning models are required
to capture such fundamental empirically derived learning data
[24]. Following this, we show that the same model can capture
data from the more complex DO and non-DO procedures.

A. Validation of the DoCritic

As an illustration of the theoretical relevance of the Do-
Critic, we evaluated the Actor-DoCritic on the acquisition-
extinction-reacquisition learning paradigm. The model of [22]
produces the desired profile for this learning paradigm but
without using delay discounted value functions to bridge the
stimulus-outcome interval. Our model utilizes a stimulus-
outcome interval of 25 time steps with values in Fig. 7 plotted
at per-trial reward onset and over 100 trials.

In the acquisition phase, following the presentation of a
single stimulus (S) and presentation of reward following the
response, response rate climbs at a negatively accelerated
rate to asymptote over learning trials. During the response
extinction phase the Omission Critic develops an omission
probability expectation (S-E2). This inhibits (is subtracted
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Fig. 7. The reacquisition effect. The red vertical lines demarcate three
phases of learning: Phase 1 = S-R acquisition, Phase 2 = S-R extinction,
Phase 3 = S-R reacquisition. Phase 3 response rate is higher, earlier, than that
of phase 1 in spite of response exctinction at the end of phase 2, demonstrating
the importance of S-R associative histories [18] to response performance.

from) the output of the Magnitude Critic (S-E1) leading to
response extinction, at a negatively accelerated rate. In the
reacquistion phase, response rate recovers quickly relative to
phase 1 as the Magnitude Critic value (Magnitude Expectation)
does not decay during the extinction phase and the Omission
Expectation update rate (βe in Eq. 2) is greater than that of
the Magnitude Critic. This ensures a smaller difference in S-
E1 minus S-E2 in early trials of phase 3 than in early trials
of phase 1. The delayed acquisition response rate relative to
the E1 (Magnitude Critic) output is caused by i) different
time constants τ for the Prospective Actor fields through
which the Critic activity is relayed, and ii) the precondition
of E-R associative learning. The DoCritic here is thus able
to qualitatively reproduce the savings effect where the single
stimulus (S) and response (R) apply. The same (‘Critic’) model
can be used to explain data generated on differential outcomes
reinforcement schedules. In the example shown in Fig. 7,
we have used the parameterization for the most ‘developed’
network – independent variable (IV) = 6, see next subsection.

B. Validation of the Actor-DoCritic: Developmental studies

We sought to replicate, in simulation, the cumulative results
of the Maki et al. [9] and Estevez et al. [10] experiments. We
used 6 values of the independent variable (IV) across two
conditions (DO vs non-DO), where [pdev , cK] pairs in {0.0
14.35; 5.20 14.53; 8.24 15.00; 10.4 16.30; 12.07 19.82; 13.44
29.38}. These values (to 2 d.p.) were obtained according to:

pdev(n) = log(n) ∗ pC (7)

cK(n) = rC1 ∗ (0.95 + rC2 ∗ en) (8)

where n is the IV number in (1,6); pC = 7.5; rC1 = 15; rC2 =
0.0025. These functions were chosen with the assumption of
a linear relation between developmental parameter growth and
performance (correct response selection) following observable
natural logarithmic and exponential functions in Fig. 8(b).

This tenuous assumption was made in the absence of existing
hypotheses. We also carried out control runs where IV values
used linear growth functions with lower and upper ranges dic-
tated by the experimental growth functions. In the control, no
observable difference occurred between DO and non-DO con-
ditions (see http://www.cognitionreversed.com/appendices/).

In the Maki et al. and Estevez et al. investigations 32 trials
were used in each experiment for each age group in each
condition (DO vs non-DO) with approximately 7 children
per age group. In our simulation, we ran 20 independent
runs (‘subjects’) over 60 trials in each condition. The longer
trial length reflects use of omission probability as the DO
dimension in our study. Thus, many trials were needed to grow
‘value’ in the Omission Critic to reflect omission probability.
In the DO condition:
• S1-R1→0.0 omission prob., magnitude=1,
• S2-R2→0.8 omission prob., magnitude=1,
In the non-DO condition:
• S1-R1→0.4 omission prob., magnitude=1,
• S2-R2→0.4 omission prob., magnitude=1,

In neither condition were alternative S-R pairs reinforced.
In the Maki et al. and Estevez et al. investigations a 2
second long stimulus - response option delay existed (trace
conditioning) where outcome immediately followed correct
response. In our simulation, the network was randomly
presented (no stimulus was presented more than three
consecutive times) with one of the two stimuli at t=25 which
persisted for 25 steps. The λ input was presented at t=75.

1) Model performance: In Fig. 8(a) is shown the mean
percentage of correct responses made by the Actor-DoCritic.
The model replicates the findings of i) no significant difference
(SEM bars do not overlap – p < 0.05) in DO vs non-DO
performance in IV1 (‘youngest’) and IV6 ‘oldest’ ages, ii)
chance performance (i.e. µ < 0.6) in non-DO performance in
IV1-IV3, iii) above chance performance in DO for IV3-IV6,
iv) above chance performance in non-DO for IV4-IV6. In the
Maki et al. and Estevez et al. experiments significant main
effects, using analysis of variance (ANOVA) were found be-
tween DO and non-DO conditions but, and consistent with our
findings, independent t-tests showed no significant difference
at the youngest (our IV1) and oldest (our IV6) ages.

We now evaluate this result in terms of associative two-
process theory and the neural-dynamics of overshadowing.

2) Associative two-process learning: Fig. 9 shows associa-
tive two-process learning performance for the final run of the
network over all trials in the most ‘mature’ parameterization
(IV = 6) in the DO condition. The subplots from top to bottom,
showing the associative paths from stimulus (S) to response
(R - action), are as follows (see Fig. 6 for reference): 1) S -
stimulus input (1 or 2), 2) S−R1 shows S−R field preshape
values (srltm) for response 1 and for S in {1, 2}, 3) S −R2
shows S − R field preshape values for response 2 and for S
in {1, 2}, 4) S−E1 shows the growth of the E1 (magnitude)
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Fig. 8. Mean performance over trials. (a) Simulation results for IV values
1-6 in DO and non-DO conditions; (b) % correct response on the Estevez et
al. investigation over five age groups, the Maki et al. data for infants aged
4 to 4.6 years is superimposed in red – chance performance; solid plots =
DO condition, dashed plots = non-DO condition. The profile in (a) was not
replicated when using a linear growth function for pdev and cK – overlapping
error bars between DO and non-DO conditions for 5/6 IVs (20 runs).

expectation for each stimulus, 5) S−E2 shows the growth of
the E2 (omission) expectation for each stimulus, 6) E1 − R
connects E1 and R (pre-act) in {1, 2}, 7) E2−R connects E2
to R (pre-act) in {1, 2}, 8) R shows response selection in the
action field, 9) Corr. shows whether the response is correct. In
plots 2-3, S = 1 is depicted in dark grey and S = 2 in light
grey. In plots 6-8, R1 is depicted in purple and R2 in green.

In Fig. 9, we see a typical learning trajectory of the Actor-
DoCritic: 1) S-R connections form allowing for activation
in the SR field to bridge the stimulus-outcome interval, 2)
reinforced correct responses simultaneously increase S-E as-
sociations (note, S-E2 requires more trials for an accurate
omission probability representation), 3) learning of S-E (pre-
synaptic values) is a prerequisite to E-R association formation,
4) E-R growth leads to stronger outputs from the ER1/ER2
fields to suppress SR activation, 5) since all weights in the
model have a decay rate, suppressed SR activity leads to decay
of S-R weights as sub-threshold activation is not reinforced. In
this sense point (1) constitutes a scaffolding of prospective (E-
R) learning via initial retrospective (S-R) learning. The same
effect is not observed in the non-DO condition (for IV=6) as
when E-R weights develop (slowly for E2-R) multiple inputs
result (via the Pre-Action field) to ER1 and ER2 fields and
the effective XOR mechanism prevents any overshadowing.
Thus, S-R weights do not decay in this control condition.
Nevertheless, the strong self-sustained attractors in the SR
field (due to high cK) permit learning of correct respond-
ing via cancelling out of the effects of noise in the action
field. E2 (omission)-R connections decay in the absence of
reinforcement, and ‘hike’ up when reinforcement arrives. S-
E2 shows the opposite effect – when reinforcement arrives,
omission probability approximation drops. It can be seen that
the probability is approximate and takes time to grow.

3) Overshadowing: Figs. 10 and 11 show the final trial for
the final run in IV = 6 for DO and non-DO conditions. The
figures depict trial neural-dynamics as retrospective actor and
prospective actor compete for response control. Fig. 10 shows
a case of prospective overshadowing where ER1 activation
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Fig. 10. DO trial neural-dynamics – IV = 6. The stemmed lines at
t = 25 − 50 indicate stimulus presence (scaled x10). The stemmed line at
t = 75 indicates the reinforcer presence following a correct response. The
vertical purple line points at when ER1 overshadows SR1 response control.

dominates in reference to an S1 − R1 pairing. This occurs
following the learning of E −R associations (Fig. 9). At the
extreme, ER activations have the power to change the action
choice previously promoted by the S−R field (‘dithering’). In
Fig. 11 no overshadowing occurs as ER fields are deactivated
by the XOR mechanism. This owes to the learning of two
E −R associations leading to two supra-threshold outputs at
the Pre-Action field – R1(pre) and R2(pre) – and thus mutual
inhibition in the ER1 and ER2 fields. A self-sustained attractor
in the SR field, however, ensures the stimulus-outcome interval
is bridged where R2 (act) is the reinforced response.

We tested for tendency to change action choice (‘dither’
between supra-threshold activations at the two action sites
in the action field) between the period of CS onset and
final action (at US onset). We looked only at performance
in the second half of all runs over IV2-6 (i.e. from trial 31-
60). We discounted IV=1 since correct choice performance
in both DO and non-DO conditions was at chance levels. A
one-way ANOVA found a main effect at the 0.01 level of
significance (p = 0.0026) with the DO condition producing a
lower dithering mean (1.526) than for the non-DO condition
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Fig. 11. non-DO trial neural-dynamics – IV = 6. The purple line shows
the point at which S2 is withdrawn and SR2 falls into a self-sustained attractor.

(2.746). This phenomenon owes to the strong ER field output
(as exemplified in Fig. 10) inducing more ‘decisiveness’.

V. CONCLUSION

In this paper we presented a neural-dynamic model of
associative-two process theory via an Actor-Critic architecture.
We demonstrated how: 1) outcome expectancy dimensions can
be modelled, 2) prospective overshadowing of retrospective
response control can occur neural-dynamically, over learning
and development. This has allowed us to understand how an
associative two-process account may explain, computationally,
mediation of prospective and retrospective response control.

Neural-dynamic models have previously been used to assess
the development of spatial working memory, SWM (similar to
our model’s restrospective memory). It has been suggested [6]
that SWM develops to effectively compete with another type
of memory (motor memory) leading to more flexible response
control. The implication of our model is that prospective (af-
fective working) memory (AWM) overshadows retrospective
memory (SWM) in early development. The developmental
profile of restrospective and prospective memory, as captured
by our model parameterization of development, indicates that
SWM develops at an initially slower pace compared to AWM.

Our simulations offer an empirically testable hypothesis
of neural-dynamic overshadowing: dithering – changeable
action tendencies – should be lower under DO than non-
DO conditions. In our model, dithering is a symptom of the
faster learning in the DO condition, i.e. the Prospective Actor
produces stronger output than the Retrospective Actor within
this developmental range. Finally, we suggest that this model
has particular application to online decision making in robotics
scenarios via utilizing differential DO expectancy information.

VI. APPENDIX

Supplementary material (model and results) can be found
at: http://www.cognitionreversed.com/appendices/.
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