
Paladyn, J. Behav. Robot. 2015

Research Article Open Access

Matthew Luciw*, Sohrob Kazerounian, Konstantin Lahkman, Mathis Richter, and
Yulia Sandamirskaya

Learning the Condition of Satisfaction of an
Elementary Behavior in Dynamic Field Theory
Abstract: A core requirement for autonomous embod-
ied agents is that they are able to produce goal-directed
actions that result in an intended change in the state
of the environment. In order to proceed to the next
goal-directed action in a sequence, the agent has to
recognise that the intended final condition of the pre-
vious action – or its condition of satisfaction (CoS)
– has been achieved. Recently, we have shown how
a sequence of goal-directed actions may be generated
on an embodied agent by a neural-dynamic architec-
ture for behavioural organisation, in which intentions
and conditions of satisfaction are represented by dy-
namic neural fields, coupled to motors and sensors of
the robotic agent. Here, we demonstrate how the map-
pings between intended actions and their resulting con-
ditions may be learned, rather than pre-wired. We use
reward-gated associative learning, in which, over many
instances of externally validated goal achievement, the
conditions that are expected to result with goal achieve-
ment are learned. After learning, the external reward is
not needed to recognize that the expected outcome has
been achieved. This method was implemented using dy-
namic neural fields, and tested on a real-world E-Puck
mobile robot and a simulated NAO humanoid robot.
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1 Introduction
Goal-directed actions of an autonomous embodied
(robotic or biological) agent are more than mere move-
ments of the involved motor system. These actions are

aimed to achieve a certain state of the environment or
the agent’s body – the goal state of the action that con-
stitutes its desirable outcome. In order to produce such
a goal-directed action, its desirable outcome has to be
represented within the controller of the behaving agent.
In theory of intentionality, developed by Searle [22], for
each such intentional, or goal-directed action two com-
ponents of the cognitive controller are essential: a rep-
resentation of the intention of the action, which guides
the motor system, and a representation of the condition
of satisfaction, which signals that the objective, or goal,
of the action has been successfully achieved.

Recently, we have introduced a computational
neural-dynamic model of intentional actions based on
Dynamic Neural Fields [15, 16]. In this model, inten-
tional actions are represented in the neural-dynamic
controller by elementary behaviours (EBs), each con-
sisting of a neural-dynamic realisation of intention and
condition of satisfaction (CoS) of the action. The frame-
work of Dynamic Neural Fields allows to implement the
intention and CoS as an attractor dynamics, defined
over a continuous parameter space [18, 20, 21]. These
dynamics may be coupled to sensory and motor sys-
tem of an embodied agent. The intention DNF, if ac-
tivated, represents the sensorimotor parameters of the
current action and controls the attentional shifts and
movements. The CoS DNF receives perceptual input
and is activated when this input overlaps with an inter-
nally generated bias, projected form the intention DNF,
which specifies the final state of the action. In this way,
complex behaviors performed by embodied agents may
be segregated into a number of such elementary behav-
iors (EBs), which may be activated simultaneously or
sequentially, similar to the early modular behavioural
robotics architectures [3]. Complex actions require the
coordination between a number of simpler EBs, such
that each EB is activated in the appropriate order, per-
sists as long as necessary in order to achieve its behav-
ioral goal, and is ultimately deactivated once the goal
is achieved: the active CoS DNF inhibits the respective
intention DNF.
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We have previously demonstrated how sequences of
goal-directed actions may be generated in this neural-
dynamic framework for behavioural organisation by
linking the neural-dynamic architecture to sensors and
motors of a humanoid robot NAO [15, 16]. We have
also demonstrated how sequences of EBs may be learned
from delayed rewards by combining the neural-dynamic
architecture with reinforcement learning [24], making
use of eligibility traces implemented as neural-dynamic
item-and-order working memory [12].

In this prior work, the structure of an EB – i.e.,
the coupling between the intention and the CoS DNFs
that encodes the anticipated outcome of an action –
was pre-wired during design of the neural-dynamic ar-
chitecture. For instance, the intention of the EB “search
for color” encoded the color of the object, at which the
robot’s gaze should be directed. The connection weights
between the intention and the CoS DNFs of this EB were
chosen such that the CoS DNF was biased to be sensi-
tive to this color, present in the central portion of the
camera image. In the present article, we explore how this
link from an active intention to a CoS may be learned
autonomously by an associative learning process.

Such learning processes are revealed in learning to
perform goal-directed actions, as studied in animal be-
havioural experiments, in particular using different con-
ditioning paradigms [4]. For instance, in instrumental
conditioning, the animal learns the association between
the desired outcome and the selected action [14]. An
explicit representation of expected outcomes of actions
is emphasized in experiments on Differential Outcome
learning.

In the model presented here, the CoS learning pro-
cess is related to such conditioning experiments, in
which animals learn to associate satisfaction of a certain
basic drive – hunger or thirst – with the outcome of a
particular action. By doing this, we try to answer the
question: what are the origins of elementary behaviors?
We consider, in general, one of the origins to be endoge-
nous drives. The drives here follow the definition pro-
vided by Woodworth [29], who explicitly distinguished
the notion of ‘drive’ from ‘mechanism’. Whereas ‘mech-
anisms’ refer to how an agent can achieve a goal, ‘drives’
refer to why one might want to achieve a goal in the first
place. As prototypical examples of bodily drives, Wood-
worth suggested hunger and thirst, each of which serve
as internal forces for motivating various sorts of behav-
iors [10]. The method presented here enables an agent,
motivated by a set of such drives, to learn to recognize
the perceptual conditions associated with desirable out-
comes.

Learning to anticipate an outcome of an action
has been extensively discussed and many existing
biologically-plausible reward prediction learning mech-
anisms that handle the case of predicting immediate
reward [? ? ]. Other reward prediction methods go be-
yond one-step prediction and are not directly related
to the animal learning literature [? ]. In such rein-
forcement learning approaches, the state or state-action
value function associated with a policy is a reward pre-
dictor with a discounted infinite horizon. Schmidhuber
considered reinforcement as another type of input [? ], in
which the non-discounted prediction and acquisition of
reward was managed by a fully recurrent dynamic con-
trol network. The cognitive architecture for behavioural
organisation comprising multiple elementary behaviors,
which we use in our work, is similar to hierarchical ar-
chitectures used in RL. The most well known class of
hierarchical RL approaches uses options [25], each of
which have some set of initiation states, a set of termi-
nation probabilities, and a control policy. From an initi-
ation state, the option’s control policy moves the agent
to where the option will terminate, whereupon another
option takes over. These termination points are sub-
goals. Elementary behaviors’ conditions of satisfaction
also act as subgoals, so learning the CoS is similar to
learning subgoals. In hierarchical RL, there have been
many approaches for defining or selecting subtasks and
subgoals [13? ? ]. In some cases, simple reactive policies
suffice between two subgoals, which is what is happening
in this work, and the policies take the form of attractor
dynamics, guided by an elementary behaviour.

In the work presented here, we demonstrate how
drive satisfaction may lead to development of an antic-
ipatory representation of the outcome of an action. In
neural-dynamic terms, the coupling between intention
and condition of satisfaction of an elementary behav-
ior is learned. After such learning, the agent may de-
tect a successful accomplishment of an action without
the need for an externally (to the nervous system) pro-
vided drive-satisfaction signal. This anticipatory repre-
sentation of the final state of the action may be used
to drive activation of the next item in a behavioural
sequence [? ]. We demonstrate functioning of the de-
veloped neural-dynamic architecture for learning con-
ditions of satisfaction in two exemplary scenarios with
embodied robotic agents: a simulated NAO robot and a
physical E-Puck robot.
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2 Methodological Background

2.1 Dynamic Field Theory

Dynamic Field Theory originates in analysis of activa-
tion dynamics of neuronal populations. Activation of
such neuronal populations during a perceptual or mo-
tor task can be modelled by a neural field, which as-
sumes homogeneous connectivity among neurons in the
population and averages away the discreetness of indi-
vidual neurons and spiking nature of their activation.
Amari [1], Wilson and Cowan [28], and Grossberg [9]
were among the first to mathematically formalise the
activation of a neuronal population as a Dynamic Neu-
ral Field (DNF) equation:

τ u̇(x, t) = − u(x, t) + hu

+ ∫ f [u(x′, t)] ω(x′ − x) dx′

+ It(x, t). (1)

Here, the activation of a DNF is denoted by u(x, t),
where x is the parameter that spans the dimension over
which the DNF is defined – i.e. a behavioural dimen-
sion, to which the neurons in the modelled population
are sensitive. t is time, τ is the time-constant of the
dynamics that determines how fast the activation con-
verges towards the attractor, defined by the three last
terms on the right hand-side of the equation: the neg-
ative resting level hu, the homogeneous lateral interac-
tions, shaped by the interaction kernel ω, typically a
sum of Gaussians with a narrow positive and a broader,
but weaker negative parts (“local excitation, global in-
hibition” or “Mexican hat” kernel) and by the output
non-linearity of the DNF, f[⋅], typically a sigmoid; the
last term of the equation is external input, which drives
the DNF and comes either from another DNF (neuronal
population) or a sensory system.

Lateral interactions of a DNF ensure existence of a
localised activity bump as a stable solution of the dy-
namics, described by Eq. 1: in response to a distributed,
noisy input, a DNF builds a localised bump of positive
activation, which is stabilised against decay by the pos-
itive part of the interaction kernel and against spread
by its negative part. These localised activity bumps, or
peaks, are units of representation in Dynamic Field The-
ory of Embodied Cognition [21], in which DNFs are used
to model behavioural signatures of perceptual and mo-
tor decision making, working memory, category forma-
tion, attention, recognition, and learning [11, 18, 23].

DNF architectures of various cognitive functions were
used to both model human behavioural data and to con-
trol autonomous robots, in order to demonstrate that
the architectures may indeed be embodied and situated
[7, 20].

The ability of Dynamic Neural Fields to form and
stabilize robust categorical outputs from noisy, dynam-
ical, and continuous real-world input are the basis for
their use in the sensorimotor interfaces of cognitive sys-
tems, including cognitive robots [? ]. DFT has been ap-
plied across a number of domains in robotics, from low-
level navigation dynamics with target acquisition based
on vision [2], object representation, dynamic scene mem-
ory, and spatial language [20] to sequence generation
and sequence learning [12, 19].

These activation peaks in DNFs represent percep-
tual objects or motor goals in the DFT framework. Mul-
tiple coupled DNFs spanning different perceptual and
motor dimensions can be composed into complex DNF
architectures to organize robotic or model human be-
havior. A single DNF builds an stable localised peak
that may track the sensory input. In oder to generate
a sequence of behaviours, an additional mechanisms is
needed, which allows to destabilise this attractor solu-
tion when the behavioural goal of the current action is
achieved. This led to development of the building block
of DNF architectures for behavioural organisation – an
Elementary Behavior that ensures that dynamical at-
tractors are stabilised and destabilised as the agent pro-
ceeds from one behaviour to the next one. We present
these building block next.

2.2 Elementary Behaviors

An elementary behavior in DFT (Fig. 1; [16]) consists
of intention and condition of satisfaction (CoS) DNFs.
An intention DNF either primes the perceptual system
of the agent (e.g. to cue it to be more sensitive to a
particular feature) or drives the motor dynamics of the
agent directly (e.g. setting attractors for the motor dy-
namics). The CoS DNF, in its turn, receives a top-down
bias from the intention DNF that specifies which per-
ceptual inputs are signalling the successful completion
of the intended action. To enable this, two inputs con-
verge on the CoS DNF: one from the intention DNF
and one from a perceptual DNF, which is connected to
a sensor and builds activity peaks over salient portions
of the sensory stream. If the two inputs match in the
dimension of the CoS DNF, an activity peak emerges
in this field, inhibiting the intention DNF of the EB.
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Fig. 1. Schematic representation of a generic elementary behav-
ior.

The intention DNF follows the generic DNF equation,
Eq. (1). Equation 2 describes the dynamics of a CoS
DNF:

τ v̇(y, t) = − v(y, t) + hv +R(t)

+ ∫ f [v(y′, t)] ω(y′ − y) dy′

+ ∫ m [W (x, y, t)] f [u(x, t)]dx

+ Isens(y, t). (2)

Here, v(y, t) is activation of the CoS DNF, where y is
the parameter which corresponds to a perpetual fea-
ture to which the CoS DNF is sensitive. Isens(y, t) is
the sensory input that comes from a perceptual DNF,
which, in its turn is directly coupled to the agent’s sen-
sors. R(t) is the reward signal, which provides a global
boost to the CoS field when an internal drive is satisfied.
W (x, y, t) is the two-dimensional weight function that
projects positive activation of the intention DNF onto
CoS DNF. Learning dynamics for this weight function
is introduced in Section 3.

The intention and CoS DNFs are associated with
intention and CoS nodes, respectively. These nodes fa-
cilitate the sequential organization of EBs. While the
DNFs are relevant for intra-behavior dynamics, such
as selection of the appropriate perceptual inputs for a
given behavior, the nodes play a role on the level of
inter-behavior dynamics (i.e., switching between behav-
iors). In previous work, we have shown how EBs may
be chained according to rules of behavioral organiza-
tion [15, 16], serial order [5, 6, 19], or the value-function
of a goal-directed representation [12].

Super-threshold activation of the condition of
satisfaction DNF generates a signal, which denotes that

the intention of its EB is successfully achieved. For in-
stance, the CoS DNF for the behavior ‘find the red ob-
ject’ would detect when a large red object is present
in the visual field. Activation of the CoS is deter-
mined both by the particular dimension(s) of the given
CoS field, as well as the synaptic connection weights
from the intention field to the CoS field. While the di-
mensions of the field reflect which sensory dimensions
the robot is sensitive to, the weights shape the pre-
activation in the CoS field and make specific regions
of the field sensitive to perceptual input. This can be
thought of as an anticipatory attentional bias.

In our previous work, the intention to CoS weights
were ‘hardcoded’ into the architecture. The dimensions
of the CoS field and the synaptic weights converging
onto the field were designed such that they would pro-
duce super-threshold CoS activation (i.e., a peak in the
CoS field) under the desired conditions. Although such
hardcoded constraints have successfully been shown to
generate desired behaviors in robotic agents (see e.g.,
[15]), we herein address the question of how the struc-
ture of an EB can be learned without a priori design of
the intention to CoS coupling.

3 Learning a Condition of
Satisfaction

Here, we present a mechanism for learning a condition
of satisfaction through reward-gated associative learn-
ing. The basic Elementary Behavior is augmented with
adaptive weights from the intention field to the CoS
field. The learning rule tunes the weights when a reward
signal is received, increasing weights that connect to the
CoS DNF’s features that are present in the stimuli, and
decreasing weights to the locations of the CoS DNF that
correspond to features that are not present. Features
could correspond to many different characteristics of the
environment, depending on the robot and the desired
behavior. One of the simplest features is color (which
is what we use in our experiments). The learned val-
ues of the weights ultimately specify which perceptual
features were most often associated with reward. After
learning, the function of the weights is to boost the CoS
field locally, by priming the features which were learned
to be associated with reward. Once those features are
perceived, the activity of the CoS field reaches thresh-
old, signalling that the active behaviour has achieved
its goal, at which point the reward signal driven by an
internal drive is not needed.
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Fig. 2. Architecture for CoS learning.

In the present work, the reward signal is designed
to come from a “teacher”, who could be “training” the
robot how to complete its elementary behaviors. This
is similar in spirit to work involving the SAIL robot of
Michigan State University, which was trained to perform
obstacle avoidance in real time by reward and punish-
ment signals coming from following a teacher’s proper
and timely usage of “good” and “bad” buttons [27].

An alternate interpretation that doesn’t require
a teacher is that the rewarding signal is associated
with innate internal drives. As mentioned, these drives
can be similar to the prototypical drives suggested by
Woodworth, e.g. hunger and thirst [29]. Drives such as
these serve as internal forces that initiate behaviors and
agents are rewarded when the drives are satisfied [10].

The behaviors learned in order to satisfy these
drives can be internalized, and recalled, in circum-
stances similar to those involving drive satisfaction, but
where there is no actual (external) satisfaction (reward
signal). Even though the agent does not achieve actual
immediate reward of the type that satisfies the primitive
internal drive that caused the behavior to be formed, it
may find the behavior useful in another context, per-
haps in combination with other behaviors, to reach an
alternate source of reward.

3.1 Reward Gated Associative Learning in
Dynamic Fields

The DFT learning process leads to the formation of
memory traces in the mapping between the intention
and CoS dynamic neural fields. Fig. 2 illustrates a sketch
of the learning architecture.

There are two dynamic neural fields, for intention
and CoS, respectively, each following Equation (1) and
Equation 2, respectively. The intention DNF builds ac-
tivity peaks with different location in the field’s dimen-
sion depending on the currently active internal drive
(primary intention) and activate the agent’s behavior
(action). The CoS field receives input from the percep-
tion DNF and input from the Intention DNF through a
weight matrix.

The reward signal, R(t) in Eq. (2), provides a global
boost to the CoS field, with the purpose of pushing per-
ceptually induced activations above the output thresh-
old, to enable learning of weights between the active
regions of the intention and CoS DNFs. We conceptual-
ized the reward signal as binary (R(t) ∈ {0,1}).

The two-dimensional weight function, W (x, y, t),
maps the output of the intention DNF onto the CoS
DNF, as shown in Fig. 5. W (x, y, t) is updated accord-
ing to reward-driven learning rule:

τlẆ (x, y, t) = λR(t){ −W (x, y, t) + (3)
+ f[v(y, t)]} ⋅ f[u(x, t)] (4)
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Fig. 3. Experiment environments for E-Puck (Left) and NAO (Right).

Fig. 4. One of the E-Puck’s intentions is satisfied by perception
of the color red. If that intention were active, this would be a
rewarding state for the robot. If the other intention were active,
this would not be rewarding. When the reward signal is positive,
all colors detected in the image are gradually associated with the
CoS for that intention. It is essential for the robot to see different
background colors. Of course, if one never sees a teacup apart
from its saucer, one will never understand they are two separate
objects.

Fig. 5. Example weighted mapping between one-dimensional in-
tention and CoS dynamic neural fields.

Note that the weights are only updated when a
nonzero reward signal R(t) is perceived. The intention
field output f[u(x, t)] also gates the learning, such that
weight values can only be updated along the “ridge” of
W (x′, y) selected by intention field peak location x′. For
weights without support from the CoS field f[v(y, t)],
their values will decay according to −W (x, y, t). The
weights with perceptual support have their values in-
creased. λ is a learning rate parameter.

Fig. 5 shows an example of a mapping between
two, one-dimensional, intention and CoS dynamic neu-
ral fields. In this case, the coupling between them is 2D,
and can be visualized easily. The effects of the weights
are visible between the fields as two “preshapes” in the
2D field (also calledmemory traces which are subthresh-
old activity bumps), indicating, for two different inten-
tions, which regions of CoS field they boost, if activated.
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The intention peaks can be thought of as behavioral
indices. A given behavior terminates once its associated
CoS field goes above threshold. The CoS field gets input
from the perceptual system (not shown), and is driven
above threshold in the cases where the input stimuli
match the preshape location.

After learning, one can see the effect of the weights,
by referring back to Eq. 2. Based on how the intention
field output peak selects x′ in the x dimension, and the
corresponding y dimension (the CoS activity) is boosted
according to W (x′, y).

In our simulations, function m in Eq. (2) which we
call a “maturity” function controls the transition from
learning to exploitation phase. m outputs a zero during
a “guided learning” phase, when intention has no effect
on the CoS field. In this phase, external rewards from
the teacher lead to peaks in the CoS field due to the
boosts from these external rewards alone. External re-
ward is necessary for the weights to undergo learning in
this phase. In the second phase, m passes its input to its
output and now, the intention DNF biases the CoS field
according to the learned weights. The agent’s learning
of W should be mature enough, such that a CoS peak
can result in the proper conditions without an external
reward. The first phase might be useful when the agent
is “immature”, either in the sense of being too young
to have learned a proper W , or having learning an im-
proper W through some means, which now needs to be
corrected. Alternatively, the weights could be used di-
rectly in both phases. In this case, the resting level of
the CoS field should depend on the number of positive
(learned) weights in the matrix W . In the beginning of
learning, the summed weights? strength is low and leads
to a low resting level of the CoS DNF, which now cannot
build activity peaks without the external reward (drive
satisfaction). Later in the learning processes, the resting
level of the CoS DNF is higher, so that the perceptual
input and the weighted input from the intention field
alone are enough for the activity peaks to be formed
in the CoS DNF. Functionally, both these mechanisms
are equivalent and here we choose a better controlled
(but less autonomous) mechanism using the “maturity”
function.

4 Implementation and Result
In order to illustrate the working of our learning mech-
anism, we present implementations on two robots – an
E-Puck, and a Nao, with the latter tested in a simulated

environment (using Webots [26]). The robots and their
environments are shown in Fig. 3. Both robots receive
visual input from their cameras through a visual per-
ceptual DNF. This DNF is spanned over dimensions of
color and location along horizontal dimension of the im-
age [15, 17] and builds activity peaks at positions that
correspond to salient colored objects . Other feature di-
mensions have been used in other Dynamic Field Theory
architectures [8], and could similarly be used with this
mechanism as well.

The E-Puck was equipped with a new color cam-
era (with higher frame-rate and resolution than the on-
board camera), and was placed in a square enclosure,
containing a red apple, a yellow block, and multi-colored
distractor items and surrounding walls. The NAO hu-
manoid robot was placed in front of a table with a pink
block and a blue block, in front of a color-changing
background wall.

Each robot switches between two elementary be-
haviors during learning. Activation of the respective in-
tentions for the E-Puck was controlled by the teacher,
through an interface. The NAO intentions were switched
back and forth on a timer. Each EB intention did not
initially have a defined Condition of Satisfaction, mean-
ing the weight mapping was initially set to all zeros.
These weights were learned over each experiment.

Whereas the E-Puck implementation did not use
motor behavior, instead being controlled by the teacher,
the NAO used a random ‘babbling’ motor behavior.
More specifically, the E-Puck switched between vari-
ous views, with different multi-color backgrounds, while
the Nao switched between two focus points over a
background surface that switched colors.

The learning process we described in the Section 3
was utilized in both situations. The weight learning was
gated by reward to associate the features (colors) that
corresponded to the eventual satisfying condition. The
E-Puck rewards were given by the teacher, while the
NAO rewards were automated such that the reward was
given as a constant signal for a short time after the
intention and environment conditions matched.

4.1 Results of experiments on a E-Puck
robot

The E-Puck was trained by a teacher in the real world,
in real time. The robot had two intentions, each of which
would be satisfied by a different color, but it did not
know what these colors are initially. For the sake of dis-
cussion, we can label these drives ‘hunger’ and ‘thirst’.
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Fig. 6. Snapshots of the E-Puck’s dynamic fields during the learning. Left: The primary intention (drive) “thirst” is activated, which
is satisfied by perception of the yellow color. When the rewarding signal is received, three colors are prevalent in the observed scene –
yellow, red, and blue, all there leaving memory traces in the weights connecting the intention and the CoS DNFs. When learning con-
tinues and rewards are experienced in different scenes, the correct mapping is learned over time. Right: The primary intention “hunger”
is activated, which is satisfied by the perception of the red color. Since only the red object is present in robot’s view when the reward-
ing signal is received, a single peak is activated in the CoS field and only weights towards its location are strengthen.

The drives became active at different times: With the
hunger drive active, reward was only obtained when a
red object was in the image, seen in Fig. 4. When thirst
was active, reward was obtained with a yellow object
in the image. The actual reward was contingent on the
teacher’s input, through a training interface.

The robot was freely moved around the arena in a
pseudo-random manner. The camera images provided
input to a two-dimensional perceptual field [19], with
one dimension as color hue (separated into 15 bins) and
the other as the image columns. Along each column of
the camera image, the hue of the pixels was summed
to provide input to a certain location in the perceptual
field. Activity peaks were formed in the perceptual field,
detecting color objects along the horizontal dimension
of the image. Positive activation in the perceptual field
was projected onto the hue dimension and provided in-
put to the CoS field. However, without either a reward
signal, which uniformly boosts the CoS field, or a tar-
geted boost (preshape) from the intention field, the CoS
field cannot achieve super-threshold activitation levels
in order to generate an output peak.

The function of the teacher-provided reward signal
was to provide this boost to the CoS field activation.
Such a boost allows a peak to emerge in the output. As
a result, the CoS field and intention field are simulta-
neously active, allowing the associative learning rule to
adapt the weights between the active intention (corre-
sponding to the active drive), and the CoS field.

Fig. 6 shows a snapshot of the system in action.
The peak in the Intention Field reflects the currently
active intention. In the Perceptual Field shown in the
left screenshot, the colored objects lead to hue feature
activations at yellow, red, and blue (white is not per-
ceived as a color). Even though the color yellow in the
center is the reason for a reward, all three colors become
slowly associated with this intention. When the robot
experiences the reward in many different contexts, the
incorrect cues in the CoS weights are diminished over
time. On the right is shown an uncluttered scene, for
comparison.

One can see the video of the experiment at http://
www.idsia.ch/~luciw/videos/epuckcos.wmv. After ap-
proximately 5 minutes of the experiment, with objects
being moved around such that many contexts were ex-
perienced, the correct mappings were learned.

After the weight matrix is learned, the reward and
the teacher became unnecessary to achieve satisfaction.
The weights provided a sufficient boost to activate
the CoS, and under the appropriate conditions, this
boost would be selective for the perceptual conditions
under which reward was achieved. The Condition of
Satisfaction will work as needed in order to terminate
its elementary behavior.

http://www.idsia.ch/~luciw/videos/epuckcos.wmv
http://www.idsia.ch/~luciw/videos/epuckcos.wmv
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Fig. 7. NAO during various stages of learning. With Drive A active, the NAO receives a reward when it finds a pink object as shown
in (a), but not when it finds a blue object (b). When the reward is received in (a), weights from the intention to CoS field are boosted
not only for the rewarding object color (pink), but incorrectly boosted for the background color as well. When Drive B is active, the
NAO only receives a reward for finding a blue object, (c), but not for finding the pink object (d). As before, when a reward is received
for finding the block that satiates the active drive, weights are not only boosted for the correct color, but for the incorrect background
color as well. After learning over a large number of trials however, only the rewarding color weights remain, with the incorrect weights
driven to 0 (shown in Fig. 8)

4.2 Results of experiments on a simulated
NAO robot

The simulated NAO robot was tested in similar, but
more automated, conditions than the EPuck. In partic-
ular, the robot “explored” the environment by looking
left and right, with a timer causing the switch in head di-
rection. A separate timer, which did not line up with the
first, caused the switch between drive A and B. The sys-
tem received a stream of visual inputs from the robot’s
camera. The camera images provided input to a two-
dimensional perceptual field (Hue × Column). Internal
drives (as before, analogous to hunger and thirst), were
structured such that a reward was only achievable by
finding the object which is selectively rewarding for the

currently active drive. When the NAO was motivated
by Drive A, it could only achieve a reward by focusing
on the pink object. When motivated by Drive B, it could
only achieve a reward via the blue object.

Shots of the dynamic fields and weights, along with
the environment, throughout the learning stages, are
shown in Fig. 7. The reward signal provided a boost to
the CoS field activation. This reward signal occurs when
a drive is “satisfied” - drive A was satisfied by the per-
ception of pink (Fig. 7(a)), but was not satisfied by the
perception of blue (Fig. 7(b)). However, the background
colors caused the weights as shown in part (b) to be
as-yet non-selective. The weights are shown in the bot-
tom two subfigures, and indicated by the blue line in
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Fig. 8. NAO after learning. After learning, the NAO only receives a boost in activation of the CoS field for the correctly rewarding
color. When Drive A is active (shown in (a)), the CoS field is selectively excited for the pink object, while for Drive B (shown in (b)),
it is selectively activated the blue object.

the lower right subfigure. This was early in learning,
however. Part (c) shows that after enough learning, the
weights associated with drive A became selective for a
single color (pink). A video of the learning is viewable at
http://www.idsia.ch/~luciw/videos/naocosbefore.mov.

This basic exploration behavior along with the as-
sociative learning mechanism we described led to the
learning of a weight matrix that appropriately encoded
the Conditions of Satisfaction. Fig. 8 shows the robot
after learning. Once the weight matrix was learned, the
actual reward (and here, the teacher) became unnec-
essary, as the conditions of satisfaction were internal-
ized. At this point, the weights provided a sufficient
boost to activate the CoS, and this boost was selec-
tive for the perceptual conditions under which reward
was achieved. (a): While drive A is active, the learned
weights caused the large but sub-threshold peak in the
perceptual field, which was further boosted by the per-
ception of pink. The other, small, peak was due to the
background color. (b): When drive B was active, a large
but sub-threshold peak was caused by the weight ma-
trix in the CoS field, for the color blue, which was
pushed above the threshold by the perception of blue.
A video of the NAO after learning can be viewed from
http://www.idsia.ch/~luciw/videos/naocosafter.mov.

5 Conclusions
In this work, we show a Dynamic Neural Field-based
architecture that allows to learn a coupling between the
intention of a action and its condition of satisfaction.

This coupling amounts to an anticipation of the out-
come of the action and is learned based on rewarding
signals, received when an internal drive such as hunger
or thirst) is satisfied. After learning, the perception of
the CoS is enough for the agent to perceive the action
as finished, external (to the nervous system) reward is
not needed any more. The method enables both a real-
world, E-Puck robot, and a simulated NAO humanoid
robot to learn the conditions of satisfaction for different
behaviors, in their respective environments.

The Dynamic Neural Fields, used to implement in-
tentions and CoS of the agent’s behaviours are contin-
uous activation functions, defined over the relevant fea-
ture spaces. Thus, the location of the activation peak
in this field is determined by the current sensory input,
which drives these fields. Moreover, the peaks have finite
width and consequently, the learned coupling between
the intention and the CoS DNFs (1) reflects the actual
sensory state, experienced by the agent during learn-
ing and (2) generalises to neighbouring locations in the
feature dimension. If during learning the activity peaks
were experienced over several neighbouring locations in
the CoS field, the weight matrix will reflect the experi-
enced peaks distribution, although with less “certainty"
(strength of respective weights).

This work is the first step towards learning ele-
mentary behaviours, which structure the behavioural
repertory of an embodied agent and control its be-
haviour. The model demonstrates how the association
between the intention and the anticipated condition of
satisfaction may be learned based on sensory input and
unspecific rewarding signal in a behaving agent.

http://www.idsia.ch/~luciw/videos/naocosbefore.mov
http://www.idsia.ch/~luciw/videos/naocosafter.mov
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