
1

Obstacle avoidance and target acquisition for
robot navigation using a mixed signal
analog/digital neuromorphic processing
system.
Moritz B. Milde 1, Hermann Blum 1,†, Alexander Dietmüller 1,†, Dora
Sumislawska1, Jörg Conradt 2, Giacomo Indiveri 1, and Yulia
Sandamirskaya 1,∗

1Institute of Neuroinformatics, University and ETH Zurich, Switzerland
2Neuroscientific System Theory, TU Munich, Germany
Correspondence*:
Yulia Sandamirskaya
ysandamirskaya@ini.uzh.ch
† These authors contributed equally to the paper.2

ABSTRACT3

Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits4
offering an alternative to the von Neumann computing architecture that is low-power, inherently5
parallel, and event-driven. This hardware allows to implement neural-network based robotic6
controllers in an energy-efficient way with low latency, but requires solving the problem of device7
variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal8
analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS)9
mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able10
to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural11
network architecture that can cope with device variability and verified its robustness in different12
environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions.13
We demonstrate how this network, combined with the properties of the DVS, allows the robot14
to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic15
Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This16
work demonstrates an implementation of working obstacle avoidance and target acquisition using17
mixed signal analog/digital neuromorphic hardware.18

Keywords: neuromorphic controller, obstacle avoidance, target acquisition, neurorobotics, dynamic vision sensor, dynamic neural19
fields20

1 INTRODUCTION

Collision avoidance is one of the most basic tasks in mobile robotics that ensures safety of the robotic21
platform, as well as the objects and users around it. Biological neural processing systems, including22
relatively small ones such as those of insects, are impressive in their ability to avoid obstacles robustly at23
high speeds in complex dynamical environments. Relatively simple neuronal architectures have already24
been proposed to implement robust obstacle avoidance, e.g. (???), while probably the most simple25

1



Milde et al. Navigation using analog/digital neuromorphic hardware

conceptual formulation of a neuronal controller for obstacle avoidance is the famous Braitenberg vehicle26
(?). When such neuronal control architectures are implemented on a conventional computer, analog sensor27
signals are converted and stored in digital variables. A large number of numerical computations are28
performed then, which are required to model the involved neuronal dynamics in software.29

Neuromorphic hardware offers a physical computational substrate for directly emulating such neuronal30
architectures in real time (????), enabling low latency and massively parallel, event-based computation.31
Neuromorphic electronic circuits can implement dynamics of neurons and synapses using digital (?)32
or analog (??) designs and allow for arbitrary connectivity between artificial neurons. The analog33
implementations of artificial neural networks are particularly promising, due to their potential smaller size34
and lower power consumption figures than digital systems (for a review see ??). But these features come at35
a price of precision and reliability. Indeed, with analog designs, the device mismatch effects (i.e. variation36
in properties of artificial neurons across the device) have to be taken into account for the development of37
robust functional architectures (?).38

A promising strategy for taking these issues into account is to implement the mechanisms used in39
biological neural networks, which face the same problem of using an unreliable computing substrate that40
consists of noisy neurons and synapses driven by stochastic biological and diffusion processes. These41
biological mechanisms include adaptation and learning, but also using population coding (???) and42
recurrent connections (??) to stabilise behaviorally relevant decisions and states against neuronal and43
sensory noise. In this work, we show that by using the population-coding strategy in a mixed signal44
analog/digital neuromorphic hardware, it is possible to cope with the variability of its analog circuits and to45
produce reliably the desired behavior on a robot.46

We present a first proof of concept implementation of such a neuromorphic approach to robot navigation.47
Specifically, we demonstrate a reactive vision-based obstacle avoidance strategy using a neurally-inspired48
event-based Dynamic Vision Sensor (DVS) (?) and a Reconfigurable On-Line Learning (ROLLS)49
neuromorphic processor (?). The proposed architecture is event-driven and uses the neural populations on50
the ROLLS device to determine the steering direction and speed of the robot based on the events produced51
by the DVS. In the development phase, we use a miniature computer Parallella1 solely to manage the traffic52
of events (spikes) between the neuromorphic devices, and to store and visualize data from the experiments.53
The Parallella board can be removed from the behavioral loop in target applications, leading to a purely54
neuromorphic implementation. In this paper, we demonstrate the robustness and limits of our system in55
a number of experiments with the small robotic vehicle “Pushbot”2 in a robotic arena, as well as in an56
unstructured office environment.57

Several neuromorphic controllers for robots were developed in the recent years, e.g. a SpiNNacker system58
(?) was used to learn sensory-motor associations with robots (??), a neural-array integrated circuit was59
used to plan routes in a known environment (?), three populations of analog low-power subthresold VLSI60
integrate-and-fire neurons were employed to control a robotic arm (?). Our system goes along similar lines61
and realizes a reactive robot navigation controller that uses a mixed signal analog/digital approach, and62
exploits the features of the ROLLS neuromorphic processor.63

In this work we follow a dynamical systems – attractor dynamics – approach to robot navigation (?),64
which formalises one of the famous Braitenberg vehicles (?). The neuronal architecture in our work is65
realised using a number of neuronal populations on the neuromorphic device ROLLS. The dynamical66

1 https://www.parallella.org
2 http://inilabs.com/products/pushbot

This is a provisional file, not the final typeset article 2

https://www.parallella.org
http://inilabs.com/products/pushbot


Milde et al. Navigation using analog/digital neuromorphic hardware

ROLLS device
on the parallella board

“PushBot” robot

(1a) The hardware setup used in this work: the neuromorphic
processor ROLLS is interfaced to a miniature computer Parallella,
which communicates with the Pushbot robot over a dedicated WiFi
network.

ROLLS

DVS Motors

Parallella

PushBot

(1b) Information flow between the three main
components: ROLLS, Parallella, and the
Pushbot, in particular, its sensor DVS and
two motors.

properties of neuronal populations and their interconnectivity allow to process a large amount of sensory67
signals in parallel, detecting the most salient signals and stabilising these detection decisions in order to68
generate robustly closed-loop behavior in real-world unstructured and noisy environments (??). Here, we69
demonstrate the feasibility of deployment of a neuromorphic processor for the closed loop reactive control.70
We found several limitations of the simple Braitenberg-vehicle approach and suggest extensions of the71
simple architecture that solve these problems, leading to robust obstacle avoidance and target acquisition in72
our robotic setup.73

2 MATERIALS AND METHODS

The experimental setup used in this work consists of the Pushbot robotic vehicle with an embedded DVS74
camera (eDVS) and the ROLLS neuromorphic processor. A miniature computing board Parallella is used to75
direct the flow of events between the robot and the ROLLS. Fig. 1a shows the components of our hardware76
setup, while Fig. 1b shows the information flow between different hardware components.77

The Pushbot communicates with the Parallella board via a wireless interface for receiving motor78
commands and for sending address-events produced by the DVS. Using a dedicated WiFi network, we79
achieve communication latency below 10ms, which was enough to demonstrate functionality of our system80
at speeds, possible with the Pushbot.81

The ROLLS device is interfaced to the Parallella board using an embedded FPGA, which is used to82
configure the neural network connectivity on the chip and to direct stimulating events to neurons and83
synapses in real time. The Parallella board runs a simple program that manages the stream of events84
between the neuromorphic processor and the robot.85

2.1 The ROLLS neuromorphic processor86

The ROLLS is a mixed signal analog/digital neuromorphic chip (?) that comprises 256 spiking silicon87
neurons, implemented using analog electronic circuits which can express biologically plausible neural88
dynamics. The neurons can be configured to be fully connected with three sets of synaptic connections: an89
array of 256x256 non-plastic (“programmable”) synapses, 256 plastic (“learnable”) synapses that realize a90
variant of the Spike-Timing-Dependent Plasticity (STDP) rule (?), and 4 additional (“virtual”) synapses91

Frontiers 3



Milde et al. Navigation using analog/digital neuromorphic hardware

non-plastic synapses

Sy
na

ps
e 

D
e-

M
ul

tip
le

xe
r

virtual 
synapses

neurons

AER Input

AE
R 

In
pu

t

AE
R 

O
ut

pu
t

Bias Generator

Figure 2. The schematic visualisation of neurons (grey triangles), non-plastic and virtual synapses (white
squares), as well as input-output interfaces and bias generator of the ROLLS chip. Each neuron on the chip
(presynaptic neuron) sends its output spikes to 256 non-plastic synapses, which, if set active, can route
these spikes to any of the neurons on the chip (postsynaptic neurons). The connectivity matrix allows for
all-to-all connectivity, but also other configurations. AER is a digital Address-Event Representation, used
to communicate spikes (it consists of an index of the spike-emitting neuron.)

that can be used to receive external inputs. In this work, only the programmable synapses were used for92
setting up the neuronal control architecture, as no online-learning was employed for the navigation task.93

Fig. 2 shows a block diagram of the ROLLS device, in which 256 spiking neurons, implemented using94
analog electronic circuits ?, are shown as triangles on the right, and 256x256 non-plastic (“programmable”)95
synapses, which can be used to create a neuronal architecture on the ROLLS, as well as 256 “virtual”96
synapses used to stimulate neurons externally, are shown as white squares. A digital Address Event97
Representation (AER) circuitry allows to stimulate neurons and synapses on the chip, as well as to read-out98
spike events off chip; a temperature-compensated digital bias-generator allows to control parameters of99
analog electronic neurons and synapses, such as the refractory period or membrane time constant.100

The programmable synapses share a set of biases that determine their weight values, their activation101
threshold, and time constants. These three parameters determine the synaptic strength and dynamics of the102
respective connection between two neurons. A structural limitation of the hardware is that each synapse103
can only assume one of eight possible weight values (four excitatory and four inhibitory values). This104
means that in a neuronal architecture, several different populations might have to share weights, which105
limits the complexity of the architecture. ROLLS consumes approx. 4mW of power in typical experiments,106
run here. The ROLLS parameters (biases) used in this work are listed in the Appendix (Section 5.2).107

2.2 The DVS camera108

The Dynamic Vision Sensor (DVS) is an event-based camera, inspired by the mammalian retina (??).109
Fig. 3 shows a typical output of the DVS camera accumulated over 0.5s (right) from the Pushbot robot110
driving in the office (left).111

This is a provisional file, not the final typeset article 4



Milde et al. Navigation using analog/digital neuromorphic hardware

DVS eventsRobot driving in the office

Figure 3. The Pushbot robot driving in the office (left) and a visualisation of the DVS output (right),
accumulated over 0.5s.

Each pixel of the DVS is sensitive to a relative temporal contrast change. If such change is detected,112
each pixel sends out an event at the time in which the change was detected (asynchronous real-time113
operation). Each event e is a vector: e = (x, y, ts, p), where x and y define the pixel location in retinal114
reference frame, ts is the time stamp, and p is the polarity of the event. The event polarity encodes whether115
the luminance of the pixel increased (an “on” event) or decreased (an “off” event). All pixels share a116
common transmission bus, which uses the Address Event Representation (AER) protocol to transmit the117
address-events off chip.118

The AER representation and asynchronous nature of communication makes this sensor low power, low119
latency, and low-bandwidth, as the amount of data transmitted is very small (typically, a very small subset120
of pixels produce events). Indeed, if there is no change in the visual scene, no information is transmitted121
off the camera. If a change is detected, it is communicated instantaneously, taking only a few microseconds122
to transfer the data off-chip.123

For the obstacle avoidance scenario, important properties of the DVS are its low data rate, high dynamic124
range, and small sensitivity to lighting conditions (?). The challenges are noise, inherent in the sensor,125
its inability to detect homogeneous surfaces, and relatively small spatial resolution (128x128 pixels), as126
well as a limited field of view (60◦). New versions of DVS are currently available, which would further127
improve performance of the system. Moreover, more sophisticated object-detection algorithms for DVS are128
currently being developed (?).129

The embedded version of the DVS (eDVS) camera (?) used in this work uses an ARM Cortex130
microcontroller to initializes the DVS, capture events, send them to the wireless network, and to receive131
and process commands for motor control of the Pushbot.132

2.3 Neuromorphic Robot133

The robot used in this work is the mobile autonomous platform Pushbot, which consists of a 10× 10cm134
chassis with two motors driving two independent tracks for propulsion (left and right). The predominant135
component on the small robot is an eDVS (Section 2.2), which acquires and provides sensory information136

Frontiers 5



Milde et al. Navigation using analog/digital neuromorphic hardware

and controls actuator output, including the robot’s motors, through its embedded microcontroller. The137
sensor’s integrated 9 DOF IMU reports changes of velocity and orientation. The robot actuators include a138
buzzer, two parallel, horizontal forward laser pointers and an LED on top, which all can show arbitrary139
activation patterns. The Pushbot is powered by 4 AA-batteries, which ensure ∼2h operation time.140

The robot communicates through WLAN at up to 12Mbps, which allows remote reading of sensory data141
(including events from the eDVS) and setting velocities with a latency < 10ms. The Pushbot robot is too142
small to carry the current experimental hardware setup. In principle, however, it is possible to place the143
ROLLS chip directly on a robot, removing the WiFi latency.144

2.4 Spiking Neural Network Architecture145

The core of the system presented here is a simple neural network architecture that is realised in the146
ROLLS device and allows the robot to avoid obstacles and approach a simple target. The “connectionist”147
scheme of the obstacle avoidance part of the architecture is shown in Fig. 4c, while the scheme of the target148
acquisition architecture is shown in Fig. 4d.149

DL

DR

OL

We chose however to connect the robot over a serial port to the Parallella to make connection
more robust and the small size, weight and power consumption of the Parallella allow it to be
mounted on the robot as well.

The second supported robot is the PushBot, also provided by NST. The PushBot has a similar
interface as the OmniRob and can also be easily accessed with the build-in WiFi module[8] over
a socket application programming interface (API).

Figure 13. The two robotic platforms currently supported by omnibot-lib: on the left the PushBot
and on the right the OmniBot (see also [12, 5]) for more information

2.4.1 Interface

RobotHost PC

robot control
and connectivity

robot listener

Robot.h

OmniRobot.h

PushBot.h

RobotListener.h

USBConnector.h

TCPConnector.h

Figure 14. Header files defining the interfaces to the robots and the robot listeners

The Robot was controlled by sending the necessary instructions over the serial connection from
the Parallella. The most important instructions are listed in table 1 on the following page:

Similarly to the DVS camera, di↵erent properties of the OmniBot are monitored asyn-
chronously by the RobotListener object, such as the actual servo states, if and which bumper
has been hit, making use again of the observer pattern as can be seen in figure 15 on page 15.
These states are logged as formatted text or processed immediately, such as the bumper states,
that trigger an emergency stop of the robot until the next drive command is send. At the
moment the Robot is polled in an interval of 1 s, future updates of the OmniBot firmware will
feature a broadcast function. However, logging the robot parameters is currently disabled as it
is favored to directly log the mapped keyboard inputs (see also figure 9 on page 11 for a list of
the mappings) instead of the polled robot parameters, amounting to the same result. Linux has

13

OR

-1

-1

-3-3
3

3

-1

-1

exc

sp

4
2

spike count

drive left
spike count

drive right
spike count

DVS frame 

Parallella

speed-2
-2

(4c) Obstacle avoidance

DL

DR
We chose however to connect the robot over a serial port to the Parallella to make connection

more robust and the small size, weight and power consumption of the Parallella allow it to be
mounted on the robot as well.

The second supported robot is the PushBot, also provided by NST. The PushBot has a similar
interface as the OmniRob and can also be easily accessed with the build-in WiFi module[8] over
a socket application programming interface (API).

Figure 13. The two robotic platforms currently supported by omnibot-lib: on the left the PushBot
and on the right the OmniBot (see also [12, 5]) for more information

2.4.1 Interface

RobotHost PC

robot control
and connectivity

robot listener

Robot.h

OmniRobot.h

PushBot.h

RobotListener.h

USBConnector.h

TCPConnector.h

Figure 14. Header files defining the interfaces to the robots and the robot listeners

The Robot was controlled by sending the necessary instructions over the serial connection from
the Parallella. The most important instructions are listed in table 1 on the following page:

Similarly to the DVS camera, di↵erent properties of the OmniBot are monitored asyn-
chronously by the RobotListener object, such as the actual servo states, if and which bumper
has been hit, making use again of the observer pattern as can be seen in figure 15 on page 15.
These states are logged as formatted text or processed immediately, such as the bumper states,
that trigger an emergency stop of the robot until the next drive command is send. At the
moment the Robot is polled in an interval of 1 s, future updates of the OmniBot firmware will
feature a broadcast function. However, logging the robot parameters is currently disabled as it
is favored to directly log the mapped keyboard inputs (see also figure 9 on page 11 for a list of
the mappings) instead of the polled robot parameters, amounting to the same result. Linux has

13

exc

sp

4

2

spike count

spike count

spike count

DVS frame 

Parallella

speed

drive left

drive right

2

2

2

2

3

-4

etc.

-3
-3

Target 
DNF

(4d) Target acquisition

Figure 4. The implemented neuronal architectures for obstacle avoidance and target acquisition. Violet
OL and OR node are obstacle detecting neuronal populations. Orange DL and DR are motor driving
populations. Violet line of nodes shows a DNF population which represent targets. Thin arrows show
excitatory non-plastic connections realised on the ROLLS chip, whereas colors and numbers show the
weights (the exact value of the weights is set by the biases, listed in Table 2 in the Appendix (Section 5.2)).
On the chip, both architectures are realised at the same time.

For obstacle avoidance, we configured two neuronal populations of 16 neurons each to represent a sensed150
obstacle to the right (“obstacle right”, or OR) and to the left (“obstacle left”, or OL) from the robot’s151
heading direction. Each neuron in the OL and OR populations receives a spike for each DVS pixel that152
produces an event in the left (right) part of the sensor, respectively (we used the lower half of the sensor153
for obstacle avoidance). The spiking neurons in the two obstacle populations sum up the camera events154
according to their neuronal integrate-and-fire dynamics (equations can be found in Appendix). If enough155

This is a provisional file, not the final typeset article 6



Milde et al. Navigation using analog/digital neuromorphic hardware

events arrive from the same neighborhood, the respective neuron will fire, otherwise it will ignore events156
that are caused by the sensor noise. Thus, the obstacle representing neuronal populations achieve basic157
filtering of the DVS events. The output spikes of the neuronal populations signal the detection of an object158
in the respective half of the field of view.159

Each of the obstacle detecting neuronal populations is connected to a motor population “drive left, DL” or160
“drive right, DR” (with 16 neurons per population). Consequently, if an obstacle is detected on the right, the161
drive left population is stimulated, and vice versa. The drive populations inhibit each other, implementing a162
winner-take-all dynamics. Thus, a decision about the direction of an obstacle-avoiding movement is taken163
and stabilised at this stage by the dynamics of neuronal populations on the chip.164

The drive populations, in their turn, inhibit both obstacle detecting populations, since during a turning165
movement of the robot, many more events are generated by the DVS, compared to those generated during166
translational motion. This inhibition compensates for this expected increase in the input rate, similar to167
the motor re-afferent signals in biological neural systems (?). This modification of the simple Braitenberg168
vehicle principle is required to enable robust and fast behavior.169

The speed of the robot is controlled by a neuronal population, “speed, sp”, which receives input from a170
constantly firing “exc”, excitatory population. The latter group of neurons has strong recurrent connections171
and continually fires when triggered by a transient activity pulse. In an obstacle-free environment, the172
speed population sets a constant speed for the robot. The obstacle detecting populations OL and OR inhibit173
the speed population, making the robot slow down if obstacles are present. The decreasing speed ensures a174
collision-free avoidance maneuver.175

These six populations comprise only 96 neurons, and represent all that is needed to implement the176
obstacle avoidance dynamics in this architecture (Fig. 4c).177

The control signals sent to the robot are, first, the angular velocity that is proportional to the number of178
spikes per neuron emitted by the two drive populations (eq. 1), and, second, the forward velocity, calculated179
based on the number of spikes per neuron emitted by the speed population (eq. 2):180

va = cvel(
Nspike
DL

Nn
DL

−
Nspike
DR

Nn
DR

), (1)

s = cspeed
Nspike
sp

Nn
sp

, (2)

where Nspike
XX are the numbers of spikes, obtained from the respective populations (drive left (DL), drive181

right (DR), and speed (sp)) in a fixed time-window, we used 500ms and 50ms in an improved version);182
Nn
XX is the number of neurons in the respective population; and cturn and cspeed are turn- and speed-factors183

(user-defined constants), respectively.184

Thus, we used neural population dynamics to represent angular and translational velocities of the robot185
and used the firing rate of the respective populations of neurons as the control variable.186

2.4.1 Dynamic neural field for target representation187

To represent targets of the navigation dynamics, we use a Dynamic Neural Fields (DNFs) architecture as188
defined in (?). DNFs are population-based models of dynamics of large homogeneous neuronal populations,189

Frontiers 7



Milde et al. Navigation using analog/digital neuromorphic hardware

which have been successfully used in modeling elementary cognitive function in humans (?), as well as in190
implementing cognitive representations for robots (???). DNFs can be easily realized in neuromorphic191
hardware by setting a winner-take-all (WTA) connectivity network in a neural population ?. Each neuron192
in a soft WTA network has a positive recurrent connection to itself and to its 2-4 nearest neighbors,193
implementing the lateral excitation of the DNF interaction kernel. Furthermore, all neurons have inhibitory194
connections to the rest of the WTA network, implementing the global inhibition of a DNF. These inhibitory195
connections can be either direct, as used here, or be relayed through an inhibitory population, which is a196
more biologically plausible structure.197

In our architecture, we select 128 neurons on the ROLLS chip to represent visually perceived targets.198
Each neuron in this population receives events from the upper half of each column of the 128x128 sensor199
frame from the eDVS and integrates these events according to its neuronal dynamics: only events that200
consistently are emitted from the same column lead to firing of the neuron. The nearby neurons support201
each other’s activation, while inhibiting further neurons in the WTA population (Fig. 4d).202

This connectivity stabilizes localized blobs of most salient sensory events, filtering out sensor noise203
and objects that are too large (inhibition starts to play role within object representation) or too small (not204
enough lateral excitation is engaged). Thus, the WTA connectivity stabilizes the target representation. The205
target in our experiments was a blinking LED of the second robot, which was detected in the DNF realised206
on the ROLLS. While this target could be easily detected since the blinking LED produces many events,207
more sophisticated vision algorithms are being developed to pursue an arbitrary target (?).208

The target population was divided in three regions: neurons of the DNF that receive inputs to the left from209
midline of the DVS frame drive the “drive left” population, whereas neurons that receive input from the210
right half of the DVS frame drive the “drive right” population. We did not connect the central 16 neurons211
of the target DNF to the drive populations to ensure more smooth target pursue when the target is in the212
center of the DVS frame (Fig. 4d).213

2.4.2 Combining obstacle avoidance and target acquisition214

The two neuronal populations that ultimately determine the robot’s steering direction (DR and DL) sum-215
up contributions from the obstacle-representing populations and the target-representing WTA population216
(Fig. 4). The obstacle contribution is made effectively stronger than the target contribution by setting the217
ROLLS biases accordingly. Thus, in the presence of an obstacle in the robot’s field of view, an obstacle218
avoidance maneuver is preferred.219

Fig. 5 shows the connectivity matrix used to configure the non-plastic connections on the ROLLS chip to220
realise both obstacle avoidance and target acquisition. This plot shows the weights of non-plastic synapses221
on the ROLLS chip (blue being the negative weights and red the positive weights; the same color code is222
used for the different weights as in Fig. 4), which connect groups of neurons (different populations, labeled223
on the right side of the figure) among each other. Within-group connections are marked with black squared224
frames on the diagonal of the connectivity matrix. Violet and orange arrows show inputs and outputs of the225
architecture, respectively.226

This connectivity matrix is sent to the ROLLS device to configure the neuronal architecture on the chip,227
i.e. to “program” the device.228

This is a provisional file, not the final typeset article 8



Milde et al. Navigation using analog/digital neuromorphic hardware

Target
 DNF

Exc.

DL

DR
OL
OR

Sp.

Weight W2+

Weight W3+

Weight W4+

Weight W1-

Weight W2-

Weight W3-

No connection

Neuronal population

Output (to robot)

Input (from DVS)

Recurrent 
connection

Figure 5. The synaptic connectivity matrix, configured on the ROLLS chip to implement the obstacle
avoidance and target acquisition architectures. Colors encode different synaptic weights (red for positive
and blue for negative connection weights) of the recurrent connections on the chip.

3 DEMONSTRATIONS

We verified the performance of our system in a number of demonstrations, reported next. Overall, over229
100 runs were performed with different parameter settings. In the following, we will provide an overview230
for the experiments and describe a few of them in greater detail to provide intuition of how the neural231
architecture works. For most experiments, we let the robot drive in a robotic arena with a white background232
and salient obstacles. We used a tape with a contrastive texture to make the walls of the arena visible to the233
robot. In four runs, we let the robot drive for several minutes freely in the office.234

3.1 Probing the obstacle avoidance: a single static obstacle235

In the first set of experiments, we let the robot drive straight towards a single object (a colored block236
2.5cm wide and 10cm high) and measured the distance from the object at which the robot crossed a virtual237
line perpendicular to the robot’s initial heading direction, on which the object is located (e.g., see the238
distance between the robot and the ’cup’ object at the last position of the robot in Fig. 6). We varied the239
speed factor of the architecture from 0.1 (∼0.07m/s) to 3.0 (∼1m/s) and have verified the effectiveness of240
the obstacle avoidance maneuver. Furthermore, we have increased the turning factor from 0.5 to 1.0 to241
improve performance at high speeds and have tested color-dependence of the obstacle perception with the242
DVS. Table 1 shows results of these measurements. Each trial was repeated 3 times and mean over the243
trials was calculated.244

The table allows to note the following characteristics of the architecture at the chosen parametrization.245
First, the performance drops at very low speeds (speed factor 0.1), especially for red and yellow objects,246
due to an insufficient number of DVS events to drive the neuronal populations on ROLLS. Second, there is247
a trade-off between this effect and the expected decay in performance (in terms of the decreasing distance248
to the obstacle) with increasing speed. Thus, at a turning factor 0.5, best performance is achieved for the249
blue object at speed factor 0.5 and for the red object at speed factor 1. Distance to the obstacle can be250

Frontiers 9



Milde et al. Navigation using analog/digital neuromorphic hardware

Table 1. Collision avoidance at different speeds: distance to the obstacle when crossing the obstacle-line
(mean over 3 trials ± standard deviation in [cm]) at different speed- and turn-factors and for different
colors of the obstacle. * signifies trials when a collision happened.

Speed/Turn 0. 1/0.5 0.5/0.5 1/0.5 1/1 1.5/1 2/1 3/1

Blue 7.0±1.0 10.3±0.6 7.7±1.5 19.3±2.1 16.3±3.3 10.8±2.6 0*
Red 0* 2.3±0.6 4.7±0.6 10.7±1.2 9.7±3.5 5.0±1.0 0*
Yellow 0* 0* 0* 7.0*±6.1 0* 0* 0*

Figure 6. An example of an obstacle avoidance maneuver. Left: Overlay of video frames showing the
trajectory of the robot. Right: activity of the neuronal populations on the chip (Top: the left and right
obstacle detecting populations; Middle: the left and right drive populations), and the motor commands,
sent to the robot (Bottom plot).

further increased by increasing the turn factor. Thus, at turn factor 1 and speed factor 1 best performance251
(i.e. largest distance to the obstacle) can be achieved for both the blue and red objects. Yellow object252
provides too little contrast to be reliably perceived by the DVS in our set-up.253

Fig. 6 demonstrates how the neuronal architecture on the ROLLS chip realizes obstacle avoidance with254
the Pushbot. On the left, an overlay of video frames (recording the top view of the arena) shows the robot’s255
trajectory when avoiding a single obstacle (here, a cup) in one of the runs. Numbers (1-3) mark important256
moments in time during the turning movement. On the right, summed activity of the neuronal populations257
on the ROLLS device is shown over time. The same moments in time are marked with numbers as in the258
left figure. In this case, already the obstacle detecting populations had a clear “winner” – the left population259
forms an increasing activity bump over time, which drives the “drive right” population, inducing a right260
turn of the robot. The bottom plot shows the commands that are sent to the robot (speed and angular261
velocity): the robot slows down in front of the obstacle and turns to the right.262

We have performed several further trials, varying the lighting conditions (normal, dark, very dark) and263
parameters of the architecture. Since the architecture uses the difference in spiking activity, induced by264
sensory events from the two halves of the visual space, avoiding a single obstacle works robustly, although265
the camera might miss objects with a low contrast (e.g. yellow block in our white arena). More advanced266
noise filtering would improve performance. While more extended version of the performed tests will be267
reported elsewhere, Fig. 7 show results of some of the successful and unsuccessful runs.268

This is a provisional file, not the final typeset article 10



Milde et al. Navigation using analog/digital neuromorphic hardware

Light conditions Object color

Figure 7. Exemplary experiments showing successful (top row) and unsuccessful (bottom row) obstacles
avoidance maneuvers in different light conditions (left) and with obstacles of different colors (right).

3.2 Avoiding a pair of obstacles269

We repeated the controlled obstacle avoidance experiment with two and three blocks in different positions.270
Each configuration was tested twenty times without crashes at speed 0.35m/s (speed factor 0.5).271

Fig. 8 shows an exemplary run that explains how the robot avoids a pair of obstacles. This example272
is important, since in the attractor dynamics approach to navigation, distance between the two objects273
determines a decision to move around or between the objects.274

Snapshots from the overhead camera are shown on the left of Fig. 8. Output of the DVS, accumulated in275
500ms time windows around the time when the snapshots were taken3, is shown in the second column, and276
the spiking activity of neuronal populations recorded from the ROLLS chip is shown in the two right-most277
columns. Activity is shown of the obstacle representing left (red) and right (blue) neuronal populations278
(third column), the left (red) and right (blue) drive populations, and the speed population (gray, forth279
column). Each of these populations has 16 neurons, dots represent their spikes4.280

At the moment, depicted in the top row of Fig. 8, the robot senses an obstacle on the right, although the281
DVS output is rather weak. Note that the neuronal population filters out sensory noise of the DVS and282

3 We dropped 80% of DVS events randomly in our architecture; moreover, we only used 5% of all remaining events for plotting.
4 Only 5% of the ROLLS spikes (every 20th spike) are shown in all our plots.

Frontiers 11



Milde et al. Navigation using analog/digital neuromorphic hardware

Figure 8. Avoiding a pair of obstacles. First column: Snapshots of four moments in time during avoidance
of a cup, moved into the robot’s trajectory. Second column: DVS “frames” – events, accumulated over
a 0.5s time window. Green dots are off events, blue dots are on events. Events in the upper part of the
frame were not considered for the obstacle avoidance. Third column: Activity of the obstacle representing
populations in 0.6-1.5 seconds before the camera snapshot in the first column was taken (red – left
population (nOL), blue – right population (nOR); each population has 16 neurons). Forth column:
Activity of the drive left (red), drive right (blue), and speed population on the ROLLS chip in the same
time as on the plots in column 3.

only detects events that cluster in time and in space. The robot turns left, driven by the activated drive283
left population and now the obstacle on the right becomes visible, providing a strong signal to the right284
obstacle population and, consequently, to the drive left population (second and third row). Eventually, the285
obstacle on the right dominates and the robot drives past both obstacles on the left side (forth row).286

Thus, with the chosen parametrization of the neuronal network architecture, the robot tends to go287
around a pair of objects, avoiding the space between them. This behavior could be changed, making the288
connections between the obstacle representing populations and drive populations stronger. However, for289
a robot equipped with a DVS, such strategy is safer, since for homogeneous objects, the DVS can only290
sense the edges, where a temporal contrast change can be induced by the robot’s motion. The robot thus291
might miss the central part of an object and avoiding pairs of close objects is a safer strategy. Adaptive292
connectivity that depends on the robot speed is also feasible.293

This is a provisional file, not the final typeset article 12



Milde et al. Navigation using analog/digital neuromorphic hardware

Figure 9. Avoiding a moving obstacle. The same arrangement is used as in Fig. 8. See main text for the
discussion.

3.3 Avoiding a moving obstacle294

In these experiment, the robot is driving straight in the arena while we move an obstacle (a coffee mug)295
into its path. We repeat this experiment six times with varying speed factors (0.1-2) of the robot. The robot296
was capable to avoid collisions in all tested cases. In fact, avoiding a moving obstacle is more robust than297
avoiding a static obstacle because the moving obstacle produces more DVS events than a static one at the298
same robot speed.299

Fig. 9 shows how the robot avoids a moving obstacle. The same arrangement of plots was used as in300
Fig. 8, described in Section 3.2. The robot was moving with cspeed = 0.5 (0.35m/s) here, the cup was301
moved at approx. 0.20m/s.302

3.4 Cluttered environment303

In the following set of experiments, we randomly placed obstacles (8-12 wooden pieces) in the arena and304
let the robot drive around at an average speed (0.35m/s). We analyzed the performance of the architecture,305
suggesting a number of modifications to cope with its limitations.306

Frontiers 13



Milde et al. Navigation using analog/digital neuromorphic hardware

Figure 10. Navigation in a cluttered arena. Left: Overlayed frames from the video, recoding the robotic
arena from the top. Green line markes the path of the robot. Right: Summed activation of neurons
in populations on the ROLLS chip over the time of the experiment. Obstacle and turn (left and right)
population are shown, as well as the commands sent to the robot (angular velocity and speed).

Fig. 10 demonstrates behaviour of the obstacle avoidance system in a cluttered environment. In particular,307
we let the robot drive in an arena, in which 8 obstacles were randomly distributed. The robot successfully308
avoids obstacles in its way with two exceptions: the robot touches the blue obstacle in the center of the309
arena, which entered the field of view too late for a maneuver, and also collides with the yellow object,310
which did not provide enough contrast to produce the required number of DVS events. These collisions311
point to two limitations of the current setup, which, first, uses single camera with a narrow field of view312
and, second, drops 80% of events to improve signal to noise ratio (the latter deprives performance for313
objects with low contrast against the background). Using more sophisticated noise filter would improve314
visibility of the faint obstacles. Note that we used rather small objects on these trials (blocks of 2x5cm),315
which posed a challenge for the event-based detection, especially taking into account our very simplistic316
noise-reduction strategy.317

To improve behavior in a cluttered environment, we modified the architecture, adding two more318
populations on the ROLLS chip, which receive input from the inertia measurement unit of the Pushbot and319
which suppress obstacle populations when the robot is turning. Moreover, we replaced the homogeneous320
connections between the obstacle and the drive populations with graded connections that become stronger321
for obstacles detected in the center than in the periphery of DVS field of view. This allows the robot to322
make shorter avoidance maneuvers and avoid obstacles in a denser configuration at a higher speed. Fig. 11323
shows a successful run with the modified architecture. Here, we also changed the sampling mechanism324
used to calculate the robot commands, replacing a fixed time window with a running average. This allowed325
us to avoid obstacles in the cluttered environment without collisions at speed as high as 0.5m/s.326

3.5 Variability of behavior327

Since behavior of our robot is controlled by activity of neuronal populations, implemented in analog328
neuromorphic hardware, the behavior of the robot has some variability, even when exactly the same329
parameters of the architecture and the same hardware biases are used. Despite this variability, the robot’s330
goal – avoiding obstacles – remains fulfilled. Such variability of behavior can be used as a drive for331
exploration, which may be exploited in learning scenarios in more complex architectures, built on top of332
our elementary obstacle avoidance system.333

This is a provisional file, not the final typeset article 14



Milde et al. Navigation using analog/digital neuromorphic hardware

Figure 11. Successful run in a cluttered environment with a modified neuronal architecture. Overlay of
the overhead-camera frames.

Figure 12. Variability of the robot’s behavior. Left: Overlay of video camera frames recording the robot,
avoiding a pair of obstacles; top view. Three different trials are recorded and overlayed here (trajectories
are shown with green lines 1-3). Right: Velocity commands, received by the robot from the neuronal
architecture (angular velocity and speed) for the three trials (from top to bottom).

Fig. 12 demonstrates variability behavior of our neuronal controller. In the figure, we show three trials,334
in which the robot avoids a two-blocks configuration, starting from exactly the same position and with335
the same configuration of the neuronal controller (speed factor 0.5, turn factor 0.5). Mismatch in the336
neuronal populations implemented in analog neuromorphic hardware, variability of the DVS output, and337
its dependence on the robot’s movements lead to strong differences in trajectories. In particular, in the case338
shown in Fig. 12, the trajectories may bifurcate and the robot might avoid the two obstacles on the right, or339
on the left side.340

Frontiers 15



Milde et al. Navigation using analog/digital neuromorphic hardware

3
7

 [
s]

Camera

5
8

 [
s]

8
6

 [
s]

EDVS

0.0

0.5

1.0

0.0

0.5

1.0

0 64 128
0.0

0.5

1.0

0

5

10

O
b

s
ta

c
le

p
o
p

u
la

ti
o
n

s

ROLLS Activity

right
left

0

10

20

T
u

rn
p

o
p

u
la

ti
o
n

s
0 20 40 60 80 100

time [s]

0

10

20

S
p

e
e
d

p
o
p

u
la

ti
o
n

s

sp
ik

e
s 

p
e
r 

5
0

0
m

s

Figure 13. Robot driving in the office environment. Left: Snapshots from the video camera showing robot
at three time points during the experiment. Middle: Events from the DVS camera and histogram of these
events, binned over 500 ms in columns in the region between two vertical lines, which were used to drive
obstacle populations on the ROLLS. Each pair of the eDVS events and histogram corresponds to the time
point of the video frame in the Left column. Note that 80% of events are randomly dropped here and only
“on” events are shown in the relevant region (lower part of the screen). Events above the midline of the
image sensor are shown with transparency (these events were not used for obstacle avoidance). Right:
Activity of the obstacle (left and right), drive (left and right), and speed neuronal populations over time
(summed activity across each population). Vertical lines mark time point that correspond to the video
frames in the Left column.

3.6 Obstacle-avoidance in a real-world environment341

Finally, we tried our architecture outside of the arena as well. The robot was placed on the floor in342
the office and drove around avoiding both furniture and people. The high amount of background activity343
compared to the arena did not diminish the effectiveness of the architecture: in four 0.5-1.5-minutes long344
trials, the robot only crashes once after it maneuvered itself into a dark corner under a table where the DVS345
sensor could not provide sufficient information to recognize obstacles.346

Fig. 13 shows an example of the Pushbot robot driving in the office environment. On the left, three347
snapshots from the video camera recording the driving robot are shown (full videos can be see in the348
Supplementary material). The snapshots show the robot navigating the office environment with its task349
being to avoid collisions. The middle column of plots shows pairs of eDVS events, accumulated over350
500 ms around the moment in time in the corresponding snapshot on the left, and respective histograms351
of events from the center region, used for obstacle avoidance. Events above the mid-line of the eDVS352
field-of-view are shown with transparency to emphasise that they were not used for obstacle avoidance:353
only events from the region of the eDVS field-of-view between the two vertical lines in Fig. 13 were used.354

Histograms below the eDVS plots show the events from this region of the field of view, summed over the355
eDVS columns. These events drive the obstacle left (red colored part of the histogram) and obstacle right356
(blue part of the histogram) neuronal populations on the ROLLS chip.357

This is a provisional file, not the final typeset article 16



Milde et al. Navigation using analog/digital neuromorphic hardware

Figure 14. Simple target acquisition: single stationary target. Left: Overlay of video frames from the
overhead camera. The robot approaches a stationary target on the left-hand side of the arena from right
to left. The robot turns left toward the target until it perceives it as an obstacle and makes an obstacle
avoidance maneuver. Right: Time-course of the spiking activity (raster plot) of the target-representing
(WTA) neurons on the ROLLS chip (top plot) and summed (over 500ms and over populations) activity of
neurons in obstacle representing and drive populations on the ROLLS chip. Vertical lines mark time points
that correspond to two middle positions of the navigating robot.

The right column shows activity of the neuronal populations on the ROLLS chip over time, as in the358
previous figures. Black vertical lines mark time moments that correspond to the three snapshots in the left359
column. These plots allow to see that although the left and right obstacle populations are often activated360
concurrently, only one of the drive populations (either left or right) is active at any moment, leading361
to a clear decision to turn in either direction in the presence of perceived obstacles. The speed plot362
shows that movement of the robot is not very smooth – it slows down and accelerates often based on the363
sensed presence of obstacles. This behavior is improved in the modified architecture, briefly described in364
Section 3.4.365

When driving around the office, robot faced very different lighting conditions, as can be seen already in366
the three snapshots presented here. This variation in lighting conditions did not effect obstacle avoidance in367
most cases, since the DVS is sensitive to relative change of each pixel’s intensity, which varies less than the368
absolute intensity when the amount of ambient light changes. However, in an extreme case, shown in the369
lower snapshot in Fig. 13, the robot collided with the metal foot of the chair. This was the only collision370
recorded.371

3.7 Target acquisition372

In addition to obstacle avoidance we also tested target acquisition in ten experiments using a second373
robot with a blinking LED as target. The robot successfully turns and drives towards the target every374
time (at speed and turn factors =0.5). In 8 out of 10 experiments the target is recognized as an obstacle375
when approached and is avoided; in two experiments, the robot failed to recognize target as obstacle after376
approaching it.377

Obviously, the simple visual preprocessing that we used did not allow us to distinguish the target from378
obstacles (other than through their position in the upper or lower part of the field-of-view of the DVS).379
Moreover, we would need an object detection algorithm to detect the target and segregate it from the380
background. This vision processing is outside the scope of our work, but there is a multitude of studies381
going in this direction (?) using modern deep/convolutional neural networks learning techniques.382

Frontiers 17



Milde et al. Navigation using analog/digital neuromorphic hardware

Fig. 14 shows target acquisition for a static target and demonstrates that the robot can approach the target383
object. At a short distance, the obstacle component takes over and the robots turns away after approaching384
the target. The figure shows the overlayed snapshots from the overhead camera, showing how the robot385
turns toward the second robot, standing on the left side of the image. When getting close to the second386
robot (approx. 10cm), the robot perceives the target as an obstacle, which has a stronger contribution to its387
movement dynamics and the robot turns away. On the left, the spiking activity of the target representation388
on the ROLLS chip is shown (raster plot where each dot represents a spike5). We can see that the robot389
perceives its target consistently on the left. After the eighth second, the obstacle contribution on the right390
becomes dominant and the robot turns left strongly.391

Fig. 15 shows how the robot can chase a moving target. We have controlled the second Pushbot remotely392
and have turned its LED on (at 200 Hz, 75% on-time). The LED provided a rather strong (though spatially393
very small) input to the DVS of the second, autonomously navigating robot. This input was integrated394
by our target WTA (DNF) population, which, however, also received a large amount of input from the395
background (in the upper part of the field of view the robot could see behind the arena’s walls). Input from396
the localised LED was stronger and more concise than more distributed input from the background and397
such localised input was enhanced by the DNF’s (WTA’s) lateral connections. Consequently, the respective398
location in the target WTA formed a “winner” (localised activity bump in the DNF terminology) and399
inhibited the interfering inputs from other locations.400

In the figure, four snapshots of the video recording the two robots are shown (top row). The leading robot401
was covered with white paper to reduce interference from the obstacle avoidance dynamics as the robots402
get close to each other (the space in the arena and the small size of the blinking LED forced us to put the403
robots rather close to each other, so that the target robot could be occasionally perceived as an obstacle).404

In the second row in Fig. 15, the summed over 500ms events of the DVS are shown, around the same405
time points as the snapshots. Only the upper part of the field-of-view was considered for target acquisition.406
This part is very noisy, since the robot “sees” outside the arena and perceives objects in the background,407
which made target acquisition very challenging. Still, the blinking LED provided the strongest input and in408
most cases the target DNF was able to select its input as the target and suppress the competing inputs from409
the background – see activity of neurons in the target DNF in the bottom plot.410

This last plot shows spiking activity of 215 neurons of the ROLLS chip, used to drive the robot (we411
don’t show the constantly firing nexc population here). We can see that the target DNF (WTA) successfully412
selects the correct target in most cases, only loosing it from sight twice, as the robot receives particularly413
many DVS events from the background during turning. The lower part of this raster plot shows activity of414
the obstacle populations, the drive populations, and the speed population, thus the dynamics of the whole415
architecture can be seen here.416

4 DISCUSSION

This paper presents a neuronal architecture for reactive obstacle avoidance and target acquisition,417
implemented using a mixed-signal analog/digital neuromorphic processor (?) and a silicon retina camera418
DVS as the only source of information about the environment. We have demonstrated that the robot,419
controlled by interconnected populations of artificial spiking neurons, is capable of avoiding multiple420
objects (including moving objects) at an average movement speed (up to 0.35m/s with our proof of concept421

5 Remember, that only 5% (every 20th) of all spikes from the ROLLS processor are shown.

This is a provisional file, not the final typeset article 18



Milde et al. Navigation using analog/digital neuromorphic hardware

Figure 15. Chasing a moving target. First row: Snapshots from the overhead camera showing the robot
controlled by the ROLLS chip chasing a manually controlled robot. Second row: Summed eDVS events
from 500ms time windows around the same moments. Events from the upper part were used for target
acquisition, events from the lower part – for obstacle avoidance. Bottom row: Spiking activity of all
neurons on the ROLLS chip over the time of the experiment. Vertical line show the moments in time,
selected for the first two rows. Red dots are spikes from the “left” populations and blue dots are spikes
from the “right” populations.

setup). We have also demonstrated that the system works in a real-world office environment, where422
background clutter poses a challenge for the DVS on a moving vehicle, creating many distracting events.423
We demonstrated that also the target acquisition neural architecture can cope well with this challenge,424
which was relevant even in the robotic arena. The distributed DNF representation of the target, supported425
by lateral interactions of the WTA neuronal population, enabled robust detection and reliable selection of426
the target against background.427

The reactive approach to obstacle avoidance that we adopt in this work has a long history of success,428
starting with the neurally inspired turtle robot more than half a century ago, as reviewed by ?. Later,429

Frontiers 19



Milde et al. Navigation using analog/digital neuromorphic hardware

Valentino Braitenberg analyzed a number of hypothetical vehicles, or creatures, that use reactive control to430
produce complex behaviors (?). His controllers were realized as simple “nervous systems” that directly431
linked the sensors to the motors of the vehicle. Using similar sensorimotor, or behavioral modules as432
building blocks, Rodney Brooks developed a behavior-based controller paradigm for roaring vehicles,433
known as “subsumption architecture” (?). Although this framework did not scale well for complex tasks and434
is not ideally suited for online learning methods, this type of controller is at the heart of highly successful435
real-world robotic systems such as the autonomous vacuum cleaners, and has been adopted, to some extent,436
in a wide range of impressive controllers for autonomous robots (e.g., ?).437

The dynamical systems approach to robot navigation (?) is an attempt to mathematically formalize438
reactive control for autonomous robots using differential equations that specify attractors and repellors for439
behavioral variables that control the robot’s heading direction and speed (?). In this framework, obstacle440
avoidance has been integrated with target acquisition and successful navigation in an unknown environment441
has been demonstrated both for vehicles and robotic arms (?). This approach is similar to another successful442
reactive approach to obstacle avoidance: the potential field approach (e.g., ?), in which the target creates a443
global minimum in a potential that drives the robot, whereas obstacles create elevations in this potential.444
However, the use of Cartesian space instead of robot-centered velocity space used in this potential field445
approach makes it prone to getting trapped in local minima.446

In mixed-signal analog /digital neuromorphic hardware, the neuronal dynamics is taken care of by the447
physics of analog electronic circuits, avoiding loosing digital computational resources on simulating them.448
Thus, neuromorphic implementation of simple biologically inspired obstacle-avoidance architectures can449
lead to low-latency (on the order of microseconds) and power-efficient (on the order of milliwatts) solutions,450
analogous to the ones used by insects. In contrast, more conventional obstacle-avoidance systems require a451
substantial amount of computing resources to process and store sensory data, detect obstacles, and compute452
motor commands. Neuromorphic implementation of such low-level processing will allow to use analogue453
sensory signals directly, avoiding their digital representation and storage, while at the same time allowing454
to build complex neural-network based computing architectures, that could be used for solving cognitive455
tasks, such as task planning, map building, or object recognition.456

We consider the work proposed as a first feasibility study, which still has a number of limitations that we457
will address in our future work. The main limitation is variability of neuronal behavior because of parameter458
drift on the analog hardware: the parameters of the hardware neural network change the network properties459
as the experimental setup conditions (temperature, humidity, etc.) change. This is a serious limitation of460
the hardware used, which makes in challenging to implement complex architectures that have to balance461
contributions of different behavioral modules (e.g. controlling turning and forward velocities, or obstacle462
avoidance and target acquisition). We are currently working on algorithms and methods for automatically463
re-tuning these parameters in a principled fashion with optimization and machine learning techniques.464
In addition, we are designing new versions of the neuromorphic hardware with on-board stabilization465
of the chip parameters, and more resources for simplifying the fine-tuning process of the architectures.466
However, approach employed here – use of populations of artificial neurons in place of single nodes in the467
architecture – allowed us to generate behavior with the state of the art analogue neuromorphic hardware.468

Apart from the hardware limitations, our simple architecture currently allows robust obstacle avoidance469
at moderate speeds (approximately 0.35 m/s). Since the robot slows down when an obstacle is detected,470
movement appears to be “jerky”. Although the smoothness of the robot movement could be improved by471
tuning the coupling strength between the obstacle and drive populations, the best solution would involve472
improving the visual pre-processing stages. In our setup, the DVS detects local contrast changes and473

This is a provisional file, not the final typeset article 20



Milde et al. Navigation using analog/digital neuromorphic hardware

produces different amount of events depending on the objects in the environment, but also modulated by474
the robot translational and rotational movements. Currently we ignore about 80% of all DVS events to475
remove both noise and to reduce bandwidth. This very basic strategy improves the signal to noise ratio,476
because the architecture enhances the spatially and temporally coherent inputs and suppresses the effect477
of random inputs. However, we plan to study a more principled approach to pre-processing and noise478
reduction, and to investigate other biologically inspired architectures for obstacle avoidance, for example479
inspired by the fly’s EMD (Elementary Motion Detector) (?) or the locust’s LGMD (looming detector480
Lobula Giant Movement Detector) (??). We are currently working on neuromorphic implementation of481
these algorithms (??).482

Moreover, the 500ms time window that we used to create plots of DVS events and average spiking483
activity was also used in our controller for counting spikes when calculating motor commands, sent to the484
robot. In our preliminary experiments on optimising the controller, we have reduced this time window to485
50ms and, more importantly, replaced it with a sliding-window calculation of the average firing rate of the486
drive and speed neuronal populations. A more principled solution to this problem would be development of487
a more direct hardware interface between the spiking neuromorphic processor and the robot’s motors, so488
that spikes can control the motor rotation directly, as suggested by ?.489

Our target acquisition network can also be further improved: the main strategy will be to introduce490
target representations in a reference frame that moves with the robot, but has a fixed orientation. Such491
representation will allow the robot to turn back to a target that has been lost from sight due to an obstacle492
avoidance maneuver. Furthermore, increasing the strength of lateral interactions in the WTA (DNF)493
population will allow to stabilize the target representation, allowing it to form a “working memory”,494
which will support target acquisition behavior in cluttered environments. To still make the system reactive495
and allow it to follow the visible target, control of the strength of lateral interactions will be introduced,496
increasing their strength when target is being lost from view and decreasing their strength when the target497
is visible. Detecting the target based on its features perceived with a DVS is a separate topic of ongoing498
research both in our lab and worldwide (e.g., ?).499

Despite of this list of necessary improvements, our neuromorphic architecture is an important stepping500
stone towards robotic controllers, realised directly in neurally inspired hardware, being the first architecture501
for closed-loop robot navigation that uses analog neuromorphic processor and minimal preprocessing of502
visual input, obtained with a silicon retina DVS. Such neuromorphic controllers may become an energy503
efficient, fast, and adaptive alternative to conventional digital computers and microcontrollers used today to504
control both low-level and cognitive behaviors of robots. While neural network implementations using the505
conventional computing architecture are typically time- and energy consuming, implementation of neuronal506
architecture using analog neuromorphic hardware approaches the efficiency of biological neural networks.507
Building neuronal models for higher cognitive function using, for instance, the framework of Dynamic508
Neural Fields ? or the Neuro-Engineering Framework (?), will allow to add more complex behaviors to the509
robot’s repertoire, e.g. finding a particular object, grasping and transporting it, as well as map formation510
and goal-directed navigation, which is the goal of our current research efforts.511

5 APPENDIX

5.1 Neuronal equations512

The dynamics of the spiking neurons on the ROLLS chip can be approximated by the differential equation513
Eqs. (3-5), obtained by performing circuit analysis:514

Frontiers 21



Milde et al. Navigation using analog/digital neuromorphic hardware

Table 2. Hardware biases for the non-plastic synapses

Bias name Range (A) Value Flags
NPA PWLK P 820p 200 H
NPA WEIGHT STD N 15p 15 H N
NPA WEIGHT EXC P 820p 123 H
NPA WEIGHT EXC0 P 0.4u 15 H
NPA WEIGHT EXC1 P 0.4u 82 H
NPDPIE THR P 820p 38 H
NPDPIE TAU P 105p 22 H
NPA WEIGHT INH N 820p 82 H N
NPA WEIGHT INH N0 820p 200 H N
NPA WEIGHT INH N1 6.5n 71 H N
NPDPII TAU P 15p 51 H
NPDPII THR P 820p 177 H

τ
dImem

dt
=

Ith
Iτ
(Iin − Iahp − Iτ ) + Ia

Iτ
(Imem + Ith)− Imem(1 +

Iahp
Iτ

)

(1 + Ith
Imem

)
(3)

τahp
dIahp
dt

=
Ithahp
Iτahp

ICau(t)− Iahp (4)

where Imem is the membrane potential, Iahp is the adaptation current, u(t) is a step function that is one515
during spikes and zero otherwise, Iτ and Iτahp are time constant currents, Ith and Ithahp are currents516
through N-type MOSFETs, τ and τahp are time constants, and Iin is the input current from the synapses.517

The time constants are dependent on the time constant currents and can be calculated by:518

τ =
CmemUT
κItau

(5)

where κ is a MOSFET property, UT is the thermal potential, and Cmem is the membrane capacitance. τahp519
is calculated similarly except it substitutes Iτ with Iτahp and Cmem with Cp.520

These equations approximate an adaptive integrate-and-fire dynamics (?) .521

5.2 Biases of the ROLLS chip used in our experiments522

Table 2 shows the biases used for our experiments to set-up non-plastic connections between the neuronal523
populations; Table 3 shows biases for the integrate-and-fire neurons on chip. Each bias corresponds to a524
current, supplied to the neuronal circuits and is calculated as Range × Value, where letters near the range525
mean the order of magnitude: “p” – piko, “n” – nano, “u” – micro (see (?) for details of the circuit and526
functional meaning of the biases). The biases are set using software and FPGA-mapping, implemented on527
the Parallella board.528

The eight different values of the synaptic weights that we used in our architecture (-4 : 4) are obtained
combining the NPA WEIGHT INH N, NPA WEIGHT INH N1, and NPA WEIGHT INH N2 biases for
negative weights and the NPA WEIGHT EXC P, NPA WEIGHT EXC P1, and NPA WEIGHT EXC P2

This is a provisional file, not the final typeset article 22



Milde et al. Navigation using analog/digital neuromorphic hardware

Table 3. Hardware biases for integrate-and-fire neurons

Bias name Range (A) Value Flags
IF RST N 15p 17 H N
IF BUR P 50p 56 H N
IF ATHR N 15p 0 H N
IF RFR1 N 820p 50 H N
IF RFR2 N 820p 50 H N
IF AHW P 15p 0 H
IF AHTAU N 820p 37 N
IF DC P 15p 0 H
IF TAU2 N 105p 77 N
IF TAU1 N 105p 100 N
IF NMDA N 15p 17 H N
IF CASC N 15p 17 H N
IF THR N 820p 100 H N

biases for positive weights:

1 = NPA WEIGHT EXC P

2 = NPA WEIGHT EXC P +NPA WEIGHT EXC P1

3 = NPA WEIGHT EXC P +NPA WEIGHT EXC P2

4 = NPA WEIGHT EXC P +NPA WEIGHT EXC P1 +NPA WEIGHT EXC P2

− 1 = NPA WEIGHT INH N

− 2 = NPA WEIGHT INH N +NPA WEIGHT INH N1

− 3 = NPA WEIGHT INH N +NPA WEIGHT INH N2

− 4 = NPA WEIGHT INH N +NPA WEIGHT INH N1 +NPA WEIGHT INH N2

Frontiers 23



Milde et al. Navigation using analog/digital neuromorphic hardware

CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial529
relationships that could be construed as a potential conflict of interest.530

AUTHOR CONTRIBUTIONS

MM: conceptualisation of the model, analyses of the results, writing up; HB: implementation of combined531
obstacles avoidance and target acquisition, experiments, results analysis, writing up; AD: implementation532
of combined obstacles avoidance and target acquisition, experiments, results analysis, writing up; DS533
implementation of first version of obstacle avoidance, parameter tuning on the chip, state of the art analysis;534
JC: support with robotic hardware and middleware, analysis of the results, writing up; GI: support with535
neuromorphic hardware, state of the art and result analysis, writing up; YS: conceptualisation of the model,536
development of the architecture, experiments design, analysis of the results, embedding in the literature,537
discussion of the results, writing, overall supervision of the project.538

FUNDING

Supported by EU H2020-MSCA-IF-2015 grant 707373 ECogNet and EU ERC-2010-StG 20091028 grant539
257219 NeuroP, as well as INIForum and Samsung Global Research Project.540

ACKNOWLEDGMENTS

We would like to thank Aleksandar Kodzhabashev and Julien Martel for their help with the software code541
used in this work. This work has started at the Capo Caccia 2016 Workshop for Neuromorphic Engineering.542

SUPPLEMENTAL DATA

Supplementary Material includes videos of our robotic experiments.543

This is a provisional file, not the final typeset article 24

http://home.frontiersin.org/about/author-guidelines#SupplementaryMaterial

	Introduction
	Materials and Methods
	The ROLLS neuromorphic processor
	The DVS camera
	Neuromorphic Robot
	Spiking Neural Network Architecture
	Dynamic neural field for target representation
	Combining obstacle avoidance and target acquisition


	Demonstrations
	Probing the obstacle avoidance: a single static obstacle
	Avoiding a pair of obstacles
	Avoiding a moving obstacle
	Cluttered environment
	Variability of behavior
	Obstacle-avoidance in a real-world environment
	Target acquisition

	Discussion
	Appendix
	Neuronal equations
	Biases of the ROLLS chip used in our experiments


