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Abstract—We present a neuromorphic adaptation of a spiking
neural network model of the locust Lobula Giant Movement
Detector (LGMD), which detects objects increasing in size in
the field of vision (looming) and can be used to facilitate obstacle
avoidance in robotic applications. Our model is constrained by
the parameters of a mixed signal analog-digital neuromorphic
device, developed by our group, and is driven by the output of
a neuromorphic vision sensor. We demonstrate the performance
of the model and how it may be used for obstacle avoidance on
an unmanned areal vehicle (UAV).

I. INTRODUCTION

Biological systems can be a source of inspiration when
solving tasks in which robots have to respond to sensory events
quickly, reliably, and efficiently in real-world environments.
One such biological system is the locust Lobula Giant Move-
ment Detector (LGMD) present in the locust nervous system.
The LGMD allows the locust to escape rapidly approaching
predators by responding to looming stimuli, ignoring other
types of visual patterns. A looming stimulus is one that
expands over the field of view. When activated, the LGMD
neuron stimulates the descending contra-lateral movement de-
tector neurons (DCMDs). These in turn stimulate leg and wing
motor neurons that trigger an escape response.

Simplified models of the LGMD neuron have been used
previously in robotic applications for obstacle avoidance tasks.
Santer et al. demonstrated the ability of the LGMD model
to detect simple looming stimuli [1]. More recent models
demonstrated robust collision avoidance by combining the
LGMD and DCMD neuron outputs [2]. In [2] the authors
demonstrated the ability of a robotic vehicle to avoid rolling
balls at different speeds. These LGMD models were based on
the simulation of spiking neural networks (SNNs) driven by
standard frame-based cameras [1]–[3]. However, frame-based
cameras are not ideal inputs for SNNs. To take full advantage
of the spiking nature of these networks, a spike-based vision
sensor can be used.

Neuromorphic vision sensors, such as the Dynamic Vision
Sensor (DVS) [4], provide spike-like (event-based) responses.
A DVS communicates positive or negative luminance changes
for pixels as soon as they occur. It detects events with mi-
crosecond accuracy and does not suffer from blurring artefacts
with fast changes in the visual scene. It is therefore an excellent
candidate for use with neuronal controllers in high-speed

applications, e.g. for obstacle avoidance on a UAV1.

In this paper, we propose an obstacle-avoidance controller
for a UAV using the output of a DVS and an LGMD-DCMD
model. For such a high-speed application, standard computer
simulations of the SNN-based models of the LGMD neuron
are too time consuming and would require off-board processing
to enable real-time functionality. For this reason, we target a
model that can be readily implemented in custom hardware
neuromorphic processors [5]. These neuromorphic processors
represent a shift away from the von Neumann architecture to
a parallel event-based architecture in which memory and com-
putation are co-localized [5]. Given their massively parallel
processing abilities, they also allow a real-time, low-power
implementation of the looming detector model we propose,
suitable for real-time control of a UAV.

We present a behavioural simulation of the LGMD and the
DCMD neurons that has been adapted to match the features
and restrictions of the neuromorphic hardware. Specifically, we
matched the simulation equations and parameters to the circuits
present on the mixed signal analog/digital neuromorphic device
presented in [6]. We demonstrate the functionality of our simu-
lated LGMD model using visual stimuli in a realistic scenario,
collected from a DVS mounted on a moving quadrotor UAV.

II. HARDWARE

A. Dynamic Vision Sensor (DVS)

Silicon retinas are an attempt to break away from the
frame-based nature of standard cameras. The biological neural
systems don’t compute with frames but rather each receptor
in the retina sends a spike to the visual cortex when its
activity level exceeds a threshold. This preprocessing on the
sensor level prevents excess or redundant information to be
communicated to the cortex. The address event representation
(AER) protocol of the DVS is the realisation of this brain-like
spike-based communication. Each pixel of the DVS computes
a normalised time derivative of light intensity [4]. If a change
in intensity is detected, the pixel communicates its coordinate
and the direction in which the intensity has changed. The DVS
has a wide operating range in terms of light intensity, low
output data rate, and microsecond latency [7]. Fig. 1b shows
an example output of the DVS when presented with a circular
looming stimulus.
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B. QUAV

(a) The experimental setup (b) The DVS output for a loom-
ing circle stimulus

Fig. 1: QUAV and example DVS output

A quadrotor UAV (QUAV) platform was built and used
to collect DVS data (Fig. 1a). The QUAV was custom made
using off the shelf parts. It was designed to be fairly compact
so that it could be used both in and outdoors. The drive-
train consisted of 20A electronic speed controllers (ESCs) and
Cobra2206-2100kv motors so that the QUAV could use 3S or
4S lithium polymer batteries. With 6045 propellers and a 4S
battery, the motors can provide 1.1kgs of thrust each at 100%
power output.

III. BUILDING AN LGMD MODEL

We constructed the LGMD model based on descriptions of
the locust’s neuron, available in [1]. The LGMD model consists
of a photoreceptor (P), a summing (S), and an LGMD neuron
layer. The neurons in these layers are typically modelled as
integrate and fire neurons: they sum up the inputs and spike if
the membrane potential exceeds a threshold [1]. These three
layers are connected by intermediate excitatory (E), inhibitory
(I), and feed-forward (F) connections, which are modelled as
linear threshold inter-neurons.

The feed-forward neurons (F) are intended to inhibit trans-
lational motion. The inhibitory connections (I) from the pho-
toreceptor to the summing layer inhibit non-looming stimuli.
The weights of the inhibitory connections are assigned based
on their distance from the central excitatory neuron. This
connection configuration spans the P layer like a kernel. This
model has been used previously to study collision avoidance
on robotic vehicles [1], [2].

The novel aspect of this work lies in the constraints of
the neuromophic processor computing platforms that we have
available in our group. These constraints are:

• The neuromorphic computing platform currently avail-
able has a total of at most 9k neurons.

• Each neuron has a fan-in of only 64 non-zero (pro-
grammable) synapses.

• Each neuron has a fan-out of 4000 units, but subdi-
vided into four distinct clusters.

• Each synaptic weight can assume one of four possible
analog values (two positive and two negative ones).
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Fig. 2: (a) The neuromorphic LGMD model. Black lines: ex-
citatory connections; red lines: inhibitory connections; dashed
lines: slower inhibitions; solid lines: faster inhibitions. (b)
The network topology for converting detected looms (LGDM
neurons) into steering directions (DCMD neurons). Solid lines:
excitatory connections; dashed lines: inhibitory connections.

• Excitatory and inhibitory synapse low pass filter cir-
cuits have shared parameters (same dynamics).

• There are two sets of parameters for choosing the type
of synapse dynamics (fast or slow).

A. Neuromorphic LGMD Model

The LGMD model introduced in the literature is not suit-
able for neuromorphic devices that have a limit on how many
synapses can be connected to a single neuron. Intermediate
layers between the LGMD neuron and the S and P layers
needed to be added to make the network compatible with
a neuromorphic processor (see Fig. 2a). Each 5 × 5 neurons
in the S layer in our model connect to each neuron in the
intermediate S (IS) layer which consists of 6 × 6 neurons.
Similarly, each 8 × 8 neurons in the P layer connect to each
neuron in the intermediate P (IP) layer which consists of 4×4
neurons. These layers are connected to the LGMD neuron with
an excitatory connection from the IS layer and an inhibitory
connection from the IP layer.

B. Adding Direction to the LGMD Model

The LGMD model can only signal whether or not an object
in the field of view is looming. This doesn’t provide any
information about the direction that the stimulus is coming
from, which is required for effective obstacle avoidance.

We split the field of view (FoV) into halves twice,
across the centre of the FoV both horizontally and vertically
(top/bottom and left/right) and implement an LGMD neuron
for each section: top, bottom, left, and right. This combina-
tion allows the use of the same network parameters as the
whole FoV implementation. Critically, this set-up doesn’t add
any additional neurons, which is important to adhere to the
neuromorphic processor constraints.

C. Translating the LGMD Output to Motor Response

To translate the directional LGMD model outputs into a
decision about an obstacle avoidance manoeuvre, we add four



DCMD neurons: up, down, left, and right. These neurons
are linked by excitatory synapses to their counterpart LGMD
neurons: up to bottom, down to up, left to right, and right to
left. They are also linked by inhibitory synapses to the LGMD
neuron that would evoke the opposite response: up to top, down
to bottom, left to left, and right to right. Fig. 2b shows the
excitatory and inhibitory connections between the LGMD and
DCMD neurons. This connectivity makes the controller similar
to the steering wheel model presented in [2]. The steering
commands also describe the amount the QUAV needs to turn
to avoid the looming stimulus.

D. Accounting for the Size of Neuromorphic Hardware

To account for limitations of the neuromorphic hardware,
the P layer was not modelled as the DVS128 pixels directly,
but the 128 × 128 pixels were fed into a 32 × 32 P layer.
This reduces the number of neurons to the size of a single
neuromorphic processor chip. Down-sampling the P layer
acts as a low-pass filter on the DVS events and improves
the performance of the model. Furthermore, the inhibitory
connections from the P to the S layer were made using a ring-
shaped kernel with two levels of weight values as in [2]. The S
layer was reduced to 30×30. The excitatory connections were
made by connecting the centre of the kernel in the P layer to
the neuron directly behind it in the S layer.

IV. EXPERIMENTS AND DATA COLLECTION

The test data was collected on the QUAV to validate its
performance in a controlled, but realistic environment. For
safety during data collection, the QUAV was fixed by a string
on each arm. These four strings could be moved independently
to restrict X,Y, and Z motion. To collect the simple stimuli
the QUAV was set to hover in front of a computer generated
scene which consisted of a black shape on a white background
translating and moving at various speeds. For complicated
stimuli the QUAV would either hover or fly towards a ball, a
hand, or a cup. A damping plate was used to reduce vibrations
generated by the QUAV.

The stimuli were recorded using the jAERViewer. Fig. 1b
shows the output of the DVS128 when recording the looming
circle stimulus. This displays events that were accumulated
over a period of 20 µs. The salt and pepper noise poses a
challenge to the looming detector, especially as it tends to
increase for a moving camera. However, the low-pass filtering
capabilities of the modified P layer helped with this noise.
jAERViewer was used to label the event streams as either
looming or non-looming. These labeled event streams were
used to evaluate the model.

V. RESULTS

This section demonstrates the performance of the modified
LGMD model, which was tested on various translating and
looming stimuli of different speeds, shapes, and sizes.

A. Analysis of LGMD Layers

Fig. 3 shows raster plots of the neuromorphic LGDM
model. The DVS output, the P, S, IS, IP, and LGMD layers of
the model are shown. The membrane potential of the LGMD

Fig. 3: Raster plots of the LGMD model layers. Last row:
activation of the LGMD neuron.

neuron over time is also shown for two looming motions of a
dark circle against light background.

Fig. 3 shows that the input is noisy and that the P layer
reduces the noise of the input. This is due to it acting as a
low-pass filter in addition to its down sampling functionality.
It is evident in the S layer that the receding component of
the input from the P layer is more inhibited than the looming
component. This is key to the success of the looming network.
The additional intermediate layers (IP, IS) act as additional
low-pass filters. The IP layer reduces the number of spikes that
would inhibit the LGMD neuron when compared to the LGMD
model in [1]. The translational component in the IP layer is
similar to that in the S layer, which is important because
this is how the feed-forward inhibition inhibits translational
motion. The LGMD neuron output spikes during looming and
not during non-looming stimulus.

B. Analysis of Performance for Different Stimuli

We have tested the model with stimuli of differing com-
plexity, two of which are shown in Fig. 4. We used the
following stimuli – comp: composite translating and looming
stimulus shown in Fig. 4a; cSlow/cFast: a slow/fast looming
circle; sSlow/sFast: a slow/fast looming square; ball: a rolling
ball; cup: a QUAV flying towards a suspended cup shown
in Fig. 4b; and hand: a looming hand in front of a hovering
QUAV.

(a) Black circle on a white back-
ground translating and looming
at increasing speeds.

(b) QUAV flying towards a cup
suspended in front of it with a
white background.

Fig. 4: Activity (raster plots) of the P layer of the LGMD
network over time for two exemplary inputs. Blue are the
looming times.



We used accuracy to determine the ability of the network
to detect looming and suppress translational and receding
stimuli. The LGMD network was defined to have detected a
looming stimulus if the output neuron’s spike rate exceeded
a fixed value (11 or more spikes in 10ms). We used differ-
ential evolution to find the parameters of the LGMD network
that maximised accuracy [8]. Table I shows the performance

Stimulus Model Accuracy Sensitivity Precision Specificity

comp LGMD 0.80 0.80 0.80 0.80
NLGMD 0.90 1.00 0.83 0.80

cSlow LGMD 1.00 1.00 1.00 1.00
NLGMD 0.80 0.60 1.00 1.00

cFast LGMD 0.44 0.00 0.00 1.00
NLGMD 1.00 1.00 1.00 1.00

sSlow LGMD 1.00 1.00 1.00 1.00
NLGMD 1.00 1.00 1.00 1.00

sFast LGMD 0.50 0.00 0.00 1.00
NLGMD 1.00 1.00 1.00 1.00

ball LGMD 0.33 0.33 1.00 0.00
NLGMD 0.66 0.66 1.00 0.00

cup LGMD 0.70 1.00 0.62 0.40
NLGMD 0.70 1.00 0.62 0.40

hand LGMD 0.50 1.00 0.50 0.00
NLGMD 0.50 1.00 0.50 0.00

TABLE I: Performance metrics of the performance of the
LGMD models for different looming stimuli

metrics of our modified LGMD (NLGMD) model and the
original LGMD model [1] which used the same P layer size
for fairness of comparison. Our results show that the modified
LGDM model is capable of detecting looming stimuli while
filtering out translational movement as well as or better than
the original model on all but the slow circular looming stimulus
(the added IS and IP layers excessively filter the already
weak DVS output from a slow stimulus reducing sensitivity).
The difference in the model’s performance in all cases is the
sensitivity. The specificity remains the same. Both models had
the same ability to identify non-looming stimuli but different
abilities to identify looming stimuli.

Fitting the model to neuromorphic hardware only decreased
the accuracy of the model on particularly sparse inputs, but
increased its performance on stimuli of varying shapes or at
high speed.

C. Using the LGMD and DCMD Neurons to Control the QUAV

To enable reactive directional control, the model will
provide continuous input to the motors depending on the
number of spikes output by the DCMD motor neurons. Fig. 5
shows activity of the directional LGMD and DCMD neurons
when an object is looming on the bottom left side of the
FoV. The bottom and left LGMD neurons spike more than
their counterparts. These LGMD neurons excite the respective
DCMD neurons, while the inhibitions mostly suppress the
other responses. Based on the activity of the DCMD neurons,
the QUAV would correctly steer to go right and slightly up.

VI. CONCLUSIONS

We presented a modified implementation of the locust
LGMD model for use on a neuromorphic processor. The
network detects looming stimuli and can be used in robotic
controllers to facilitate obstacle avoidance. Our implementation

Fig. 5: Exemplary output of the four LCMD neurons and the
respective DCMD neurons for a looming stimulus (green lines
are ground-truth looms).

uses DVS as input to the model and is tailored to implemen-
tation in a neuromorphic device. We have tested the model
on input, recorded with a DVS mounted on a QUAV. The
performance of the model is superior to the original model and
can be further improved by using another bio-inspired vision
system – the fly elementary motion detector (EMD) neuron,
which detects the direction in which stimuli are propagating
across the field of view. The EMD neurons can be combined
with the LGMD to further suppress the translational motion in
order to improve detection of the looming objects.
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