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Abstract. The sensorimotor maps link the perceived states to actions,
required to achieve the goals of a behaving agent. These mappings de-
pend on the physics of the body of the agent, as well as the dynamics
and geometry of the environment, in which the behavior unfolds. Au-
tonomous acquisition and updating of the mappings is crucial for ro-
bust behavior in a changing real-world environment. Autonomy of many
architectures, which implement the learning and adaptation of sensori-
motor maps, is limited. Here, we present a neural-dynamic architecture
that enables autonomous learning of the sensorimotor transformation,
involved in looking behavior. The architecture is built using Dynamic
Neural Fields and is implemented on a robotic agent that consists of an
eDVS sensor on a pan-tilt unit.

1 Introduction

Behavior of a biological or artificial cognitive agent may be understood in terms
of the sensorimotor transformations, which map the perceived states of the en-
vironment and the agent’s body onto actions, leading to accomplishment of the
agent’s goals. These transformations, or mappings, may be segregated into more
or less independent modules based on the available sensory and motor modali-
ties, which can be organized according to different goals, pursued by the agent
[2]. Critically, the mappings between the sensory states and the actions change
constantly, because of the changes in the agent’s body, as in the case of a de-
veloping and aging human, or changes in the environment. Therefore, learning
and adaptation of the sensorimotor maps is essential for flexible and robust
generation of purposeful behavior in a real-world environment [9].

A possible mechanism to learn and update a mapping was introduces by
Kohonen early on in his work on Self-Organizing Maps (SOMs) [7]. Using the
mathematical mechanism of SOMs, several architectures have been introduced,
which enable learning of sensorimotor mappings, involved in modeling forward
and inverse models in robotic control [12, 6, 4, 17]. Other architectures for adap-
tive control based on learning sensorimotor mappings use learning in multilayer
neural-networks [13], incremental memory-trace update on the map based on
experience [10], or error-driven learning rules (for a classical example, see [8]).
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This and much more work on adaptive robotic control emphasize the impor-
tance and feasibility of learning and adaptation of the sensorimotor mappings.
However, all these methods share a subtle, but critical limitation, which is hin-
dering their application outside restricted scenarios. This limitation is the lack
of autonomy. For instance, in training a SOM or a neural network in an adaptive
controller, robotic actions are generated by sending random commands and ob-
serving sensory states when each action is finished. Both the command and the
sensory state are stored in a data vector, which is used – in most cases offline
– to drive the self-organization algorithm. The autonomy of the learning pro-
cess is limited here, because the mechanisms of autonomous selection, initiation,
monitoring, and termination of the actions are not included in the models. The
moments in time, when it is appropriate to update the map are not detected
autonomously from the sensory flow. These problems of coupling of the learning
processes to the perceptual and motor systems have to be solved in order to
enable learning along with behavior in a real-world robotic scenario.

Autonomy of cognitive processes and their development is central in the dy-
namical systems approach to modeling human cognition [16]. Dynamic Field
Theory (DFT) is a particular flavor of the dynamical systems approach, which
has been successful in application of the cognitive models to control of robotic
behavior [14, 11, 19]. The core element in this framework are the Dynamic Neu-
ral Fields (DNFs) – activation functions defined over topological spaces, which
characterize the state of the behaving agent and its representation of the envi-
ronment. Localized activity peaks emerge as stable solutions of the dynamics of
DNFs and represent salient characteristics of the perceived states, as well as the
goals of the upcoming motor actions.

Here, we demonstrate how the framework of DFT can be applied to learning
the sensory-motor transformations involved in looking behavior. We explore how
autonomous learning may be enabled in this framework along with autonomous
perception and action generation. The actions are initiated and terminated au-
tonomously based on emerging representations of intentional states. The learn-
ing process is triggered autonomously when a match between the intended and
the actual sensory state is perceived and its representation is stabilized in the
condition-of-satisfaction neural-dynamics. We present here an implementation
of the learning architecture in a robotic system using a pan-tilt camera unit.

2 Methods: Mathematical framework and the dynamical
architecture

2.1 Dynamic Neural Fields

The dynamics of populations of biological neurons can be described by a contin-
uous differential equation, which abstracts away the discreteness and the spiking
nature of individual neurons, Eq. (1) [18, 5, 1]. Moreover, this equation can be
formulated not in the space of the network of physical neurons but, instead,
in the functional space of behavioral parameters, to which the neurons respond
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according to their tuning curves. In this formulation, an architecture of cou-
pled dynamic neural fields is still related to neural activity in real brains, but
expresses the dynamics of a neural system in functional, behavioral terms:

τ u̇(x, t) = − u(x, t) + h+

∫
f(u(x′, t))ω(|x′ − x|)dx′ + I(x, t). (1)

In Eq. (1), u(x, t) is the activation of a dynamic neural field (DNF) at time t; x is
one or several behavioral parameters (e.g., color, pitch, space, or velocity), over
which the DNF is spanned; τ is the relaxation time-constant of the dynamics; h
is the negative resting level, which defines the activation threshold of the field;
f(·) is the sigmoidal non-linearity shaping the output of the neural field when it
is connected to other fields or self-connected; the latter connections are shaped
by the “Mexican hat” lateral interaction kernel, ω(|x′ − x|), with a shot-range
excitation and a long-range inhibition; I(x, t) is the external input to the DNF
from the sensory systems or other DNFs.

The dynamics of a DNF (Eq. (1)) has an attractor, determined by the ex-
ternal input, I(x, t), the resting level of the field, h, and the strength of lateral
interactions, specified by the kernel, ω(|x−x′|). A distinctive type the attractor
of a DNF is a localized activity peak, which may be “pulled up” by the lateral
interactions from a distributed input with inhomogeneities. Such peaks of ac-
tivation are units of representation in Dynamic Field Theory [15]. Because of
the stability and attractor properties of the DNF dynamics, cognitive models
formulated in DFT may be coupled to real robotic motors and sensors and were
shown to generate cognitive behavior in autonomous robots [14].

Intentionality in DFT. In order to enable autonomous activation and deac-
tivation of dynamical attractor states in DNF architectures, each behaviorally
relevant component consists of two dynamic neural fields: an intention and a
condition-of-satisfaction DNF. The intention DNF is coupled to motor systems
of the agent and drives its behavior by setting attractors in the low-level mo-
tor dynamics. The condition-of-satisfaction DNF receives a sub threshold input
from the intention DNF and is activated by the sensory input, which matches
the expected final state of the intended action. An active CoS field inhibits the
intention DNF and therewith terminates the current behavior. After a brief tran-
sition instability, in which the CoS field looses its activation, the next action is
selected driven by the external (bottom up) or internal (top-down) input to the
intention DNF [11].

Learning in DFT. The basic learning mechanism in the DFT is the formation
of memory traces of positive activation of a DNF. The memory trace is coupled
back to the DNF and facilitates its activation at previously activated locations.
Two DNFs may be coupled through a higher-dimensional memory structure,
similar to a weight matrix in the standard neural networks. In DFT, such weight
matrix is adapted through the mechanism of memory trace formation: similar to
the Hebbian learning process, the coupling is strengthen between locations in two
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Fig. 1: The DNF learning architecture: the eDVS provides a visual input to the per-
ceptual Dynamic Neural Field (DNF), which in its turn drives the visual intention
DNF, and, through an adaptive mapping, the motor intention DNF. Visual and motor
condition-of-satisfaction (CoS) nodes control the action-perception flow, and the visual
match DNF detects moments, when the mapping should be updated.

DNFs, which are activated simultaneously. The learning process is functionally
robust if the coupling is updated only when the behaviorally relevant states are
active. In the looking architecture, presented next, we combine the elements
of intentionality with learning dynamics to demonstrate autonomy of learning
processes in DFT.

2.2 The DFT closed-loop looking architecture

Fig. 1 shows the DNF architecture, which both generates the autonomous looking
behavior of the pan-tilt camera system and enables adaptation of the sensory-
motor mapping to produce correct motor commands that move the camera to-
ward visual targets. The architecture consists of the following dynamical struc-
tural modules.

Visual system. In the architecture, an embedded dynamic vision sensor (eDVS)
[3] asynchronously generates events, which represent those pixels in the current
field of view, for which the observed temporal contrast changes, e.g. because
of moving objects in an otherwise static scene. Such events, generated by the
hardware, provide positive input to a perceptual DNF (pDNF), in which peaks
of suprathreshold activation are built at those locations where salient moving
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pixels are concentrated. The pDNF is input-driven, i.e. activity peaks decay if
input ceases and are not sustained, new moving input induces new peak(s).

The pDNF provides input to the visual intention DNF (viDNF), in which
self-sustained activity peaks may be formed. A peak in this field represents
the target for the next saccade and has to be sustained for the time of the
saccade, although the object representation moves in the visual field because of
the camera motion. The viDNF is inhibited by the visual CoS, which signals that
the saccadic movement is successfully accomplished. The viDNF is also inhibited
by the motor CoS to a weaker extent, so that a new peak may be built in this
field after an unsuccessful saccade, which failed to center the target.

Motor system. A peak of positive activation in the viDNF induces an activity
peak in the motor intention DNF (miDNF) through a matrix of adaptive weights,
which map locations in the viDNF to locations in the miDNF. The learning
mechanism, active in this coupling structure will be described in the section on
Sensorimotor transformation.

Activity peaks in the miDNF set attractors for the motor dynamics of the
looking behavior according to Eq. (2):

τ ¨pan(t) = − ˙pan(t) + ξpan(t), τ ¨tilt(t) = − ˙tilt(t) + ξtilt(t), (2)

where ξpan(t) and ξtilt(t) are attractors for the rate of change of the pan and the
tilt of the camera head unit, set according to Eq. (3):

ξpan(t) = c1

∫∫
kf(umot(k, l, t))dkdl,

ξtilt(t) = c2

∫∫
lf(umot(k, l, t))dkdl. (3)

Here, k and l are the two dimensions of the miDNF, which correspond to the
pan and tilt velocities, respectively. The ξpan and ξtilt are estimations of the
location of the activity peak in the miDNF along its two dimensions; c1 and c2
are scaling constants.

A peak in the miDNF sets a non-zero attractor for the pan and tilt velocities.
As long as the velocity variables approach this attractor, the camera moves.
When the attractor is reached, the motor CoS node, Eq. (4), is activated and
inhibits the miDNF. When activity in the miDNF ceases, the motor attractors
are set to zero (according to Eq. (3)).

τ v̇cos(t) = −vcos(t) + hcos + cexcf(vcos(t)) + cmf∫∫ (umot) + cafdiff . (4)

In Eq. 4, vcos(t) is activation of the motor CoS node for either pan or tilt move-
ment; f∫∫ (umot) =

∫∫
f(umot(k, l, t))dkdl is the peak-detector for the miDNF;

fdiff = f(0.5− |ξpan − ˙pan|) is a detector, activated when the state variable for
the pan or the tilt dynamics reaches the respective attractor; cm and ca are scal-
ing constants for these two contributions, cexc is the strength of self-excitation
of the motor CoS node.
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Following the dynamics of Eq. (2-4), the “saccades” are produced with differ-
ent horizontal and vertical amplitudes depending on the location of the activity
peak in the miDNF.

Sensorimotor transformation. Initially, the coupling between the viDNF
and the miDNF is modeled by a random connectivity matrix. The coupling
structure is updated directly after a successful saccade, when the (still active)
location in the visual intention DNF and the (still active) location in the motor
intention DNF correspond to a correct mapping. The strength of the memory-
trace activation in the respective location in the coupling structure is updated
according to a simple Hebbian-like learning rule (“fire together – wire together”),
gated by the activity in the visual match DNF (vmDNF), Eq. (5).

τlṪ (x, y, k, l) = λ
∫
f(umatch(x, y))dxdy ·

·
(
− T (x, y, k, l) + f(uvis(x, y))× f(umot(k, l))

)
(5)

The coupling structure T (x, y, k, l) (time-dependence is omitted in the equation)
between the viDNF, uvis(x, y), defined over image coordinates (x, y), and the
miDNF, umot(k, l), defined over motor coordinates, k (pan) and l (tilt), retains
its values if the vmDNF, umatch(x, y), is salient. If there is a positive activation in
the vmDNF (i.e., the visual input from the target landed in the central part of the
pDNF, see Fig. 1), the integral before the learning term shunts the change in the
mapping to be non-zero. The learning equation sets an attractor for T (x, y, k, l)
at the values of positive correlation between the two intention DNFs, calculated
as a sum between the output of the viDNF, expanded along the dimensions of
the miDNF, and the output of the miDNF, expanded in the dimensions of the
viDNF, augmented with a sigmoidal threshold function (this neural-dynamic
operation is denoted by the × symbol in Eq. (5)).

3 The learning experiments

Fig. 2 (left) shows an exemplary time-course of the pan component of several
saccadic movements. The upper plot shows the time-course of the pan-velocity
variable, sent to the motors, and of the attractor for this variable. The middle
plot shows the respective pan trajectory. In the lower plot, activation of the
motor CoS is depicted. Fig. 2 (right) shows the sensorimotor mapping before
learning and after several successful saccades. The 4D mapping is shown here
as slices along the motor dimensions, arranged in the figure according to the
visual dimensions. Before learning, the mapping is initialized as random con-
nections tensor. After each successful saccade, one region in the 4D field, which
corresponds to the overlap between activity peaks in the viDNF and miDNF,
is updated (one such region is marked with the red circle; note the light-blue
dots in the tiles in this region). After only a few successful saccades (nine shown
here), a large portion of the 4D space of the mapping is learned (regions marked
by the red circle and the red arrows), because of the finite size of activity peaks
in the intention DNFs.
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Fig. 2: Left: Exemplary time-course of a learning session. Right: The mapping
between the visual and the motor intention spaces before learning (top), and
after several successful “saccades” (bottom).

4 Discussion

In this paper, we have presented a neural-dynamics architecture that enables
autonomous learning of a sensory-motor mapping involved in looking behavior,
generated with an eDVS camera mounted on a pan-tilt unit. We have demon-
strated how learning accompanies autonomous generation of the looking actions
from the low-level sensory input in a closed behavioral loop. We have combined
stability of the Dynamic Neural Field representations with elements of the be-
havioral organization to enable autonomy of the learning process. This includes
autonomy of selection of the visual target, initiation of the motor action, termi-
nation of the motor action, and decision to trigger the learning dynamics. Such
autonomy is critical for implementation of algorithms for adaptation of senso-
rimotor mappings in real-world robotic scenarios, as well as for understanding
autonomy of learning processes in biological cognition.
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